BEFORE THE ILLINOIS POLLUTION CONTROL BOARD

)	
In the Matter of:)	
)	
STANDARD FOR THE DISPOSAL OF)	
COAL COMBUSTION RESIDUALS)	PCI
IN SURFACE IMPOUNDMENTS:)	(Ru
PROPOSED NEW 35 ILL. ADMIN.)	
CODE 845)	
)	

PCB 2020-019 (Rulemaking - Water)

NOTICE OF ELECTRONIC FILING

))

To: Attached Service List

PLEASE TAKE NOTICE that on August 27, 2020, I electronically filed with the Clerk

of the Illinois Pollution Control Board ("Board") the TESTIMONY OF ANDREW REHN

and ATTACHMENTS, copies of which are served on you along with this notice. Attachments

are being filed separately due to size restrictions.

Dated: August 27, 2020

Respectfully Submitted,

f 2 Cul

Jennifer Cassel (IL Bar No. 6296047) Earthjustice 311 S. Wacker Dr., Suite 1400 Chicago, IL 60606 (312) 500-2198 (phone) jcassel@earthjustice.org /s/Thomas Cmar_

Thomas Cmar (IL Bar No. 6298307) Earthjustice 3ll S. Wacker Dr., Suite 1400 Chicago, IL 60606 T: (312) 500-2191 tcmar@earthjustice.org

/s/ Mychal Ozaeta Mychal Ozaeta (ARDC No. #6331185) Earthjustice 707 Wilshire Blvd., Suite 4300 Los Angeles, CA 90017 T: 213-766-1069 mozaeta@earthjustice.org

/s/ Melissa Legge Melissa Legge (ARDC No. #6334808) Earthjustice 48 Wall Street, 15th Floor New York, NY 10005 T: 212 823-4978 mlegge@earthjustice.org

Attorneys for Prairie Rivers Network

/s/ Kiana Courtney Kiana Courtney (IL Bar No. #6334333) Environmental Law & Policy Center 35 E. Wacker Drive, Suite 1600 Chicago, Illinois 60601 KCourtney@elpc.org

/s/Jeffrey T. Hammons Jeffrey T. Hammons, (IL Bar No. #6324007) Environmental Law & Policy Center 1440 G Street NW Washington DC, 20005 T: (785) 217-5722 JHammons@elpc.org

Attorneys for Environmental Law & Policy Center

/s/ Faith E. Bugel Faith E. Bugel 1004 Mohawk Wilmette, IL 60091 (312) 282-9119 fbugel@gmail.com

Attorney for Sierra Club

BEFORE THE ILLINOIS POLLUTION CONTROL BOARD

IN THE MATTER OF:)
STANDARDS FOR THE DISPOSAL OF COAL COMBUSTION RESIDUALS IN SURFACE IMPOUNDMENTS: PROPOSED NEW 35 ILL. ADM. CODE 845) R 20-19) (Rulemaking – Land)))

PRE-FILED TESTIMONY OF ANDREW REHN

I am a water resources engineer at Prairie Rivers Network. I began full time at Prairie Rivers Network in November of 2015, shortly after receiving my Master's Degree in Civil Engineering at the University of Illinois in Urbana Champaign, where I had also studied as an undergraduate. Prairie Rivers Network sought out an engineer to have someone on staff with a technical background who could review permits and industry plans, such as coal ash closure plans or NPDES permits. Most of my work at Prairie Rivers Network has been focused on coal ash, and I believe my perspective will be helpful to the Board in this rulemaking.

In my time at Prairie Rivers Network, I have made it my goal to understand, and share understanding, about the coal ash problem in Illinois. To that end, I have spent years collecting information about coal ash across the state and organizing that information. My search has included the US EPA Structural Stability Assessments following the massive Kingston coal ash pond collapse, NPDES Permits, Illinois EPA violation notices, closure plans, federal CCR rule documentation, and more. To disseminate that information to the public, I created a database with a searchable map interface to allow the public to see the physical location of coal ash ponds and access available technical information. Unfortunately, that map is no longer accessible because Google stopped supporting application that connected the database to the map.

I also engage with communities near coal ash ponds across the state, offering support when closure plans are proposed or helping prepare for NPDES permit hearings. I help community members expeditiously access technical information by assisting with FOIA requests and other information collection tasks, and I meet with community members to discuss that information. In that way, I see my role as crucial in the regulatory process. This seems problematic to me. The public should not need assistance from a full-time staff person at a non-profit in order to properly engage in the regulatory process. The process should be set up so that community members are able to easily access the necessary information on their own.

In my role at Prairie Rivers Network, I have also reviewed many of the technical documents – such as proposed NPDES permits and closure plans – that Illinois EPA reviews and approves. I have submitted comments on these technical documents and raised questions that the Agency has

not considered. I suspect that I am often only the second or third pair of eyes that do a full review of the technical documentation. It is my understanding that at some point Illinois EPA's groundwater division had approximately one full time employee's worth of staff time for coal ash issues – which is about the same full time employee capacity as Prairie Rivers Network to work on the coal ash issue. In addition to adding capacity, I have also found that I, and other community members and NGO staffers, often bring a different perspective that the Agency has not considered in its evaluation of coal ash documentation.

I. Illinois's Coal Ash Problem

There is well documented impact to groundwater from coal ash sites in Illinois, and it is not just from the impoundments. In 2018, Prairie Rivers Network partnered with Earthjustice, Environmental Integrity Project, and Sierra Club to collect the groundwater monitoring data from dozens of industry reports released to comply with the federal CCR rule. I helped to manually copy the Illinois groundwater monitoring results into a database, and prepare a report based on those results, which we called *Cap and Run: Toxic Coal Ash Left Behind by Big Polluters Threatens Illinois Water*. When available, we also included groundwater data retrieved under FOIA from Illinois EPA for sites not covered by the federal rule at the time. We reported on groundwater quality at coal ash sites near 24 power plants in Illinois, and found that 22 of the 24 coal ash sites had pollutants above health-based thresholds, namely EPA's presumptive groundwater protection standards and Illinois's Class I groundwater quality standards, which apply to potential drinking water. We found that industry's own reporting showed that coal ash impoundments in Illinois were leaking pollutants like arsenic, boron, cadmium, cobalt, lead, selenium, and thallium at unsafe levels.

Not all the pollution we reported was related to coal ash impoundments. The monitoring also included groundwater near coal ash landfills, as is required under the federal rule, and we found that the landfills were also impacting groundwater. For example, at the Duck Creek landfill, arsenic, cobalt, lead, and lithium were all found above health-based thresholds. At Hennepin, lithium and molybdenum were found over health-based thresholds. At Newton, arsenic was found over health-based thresholds. Clearly, landfills are also a problem that needs to be addressed in Illinois.

I also reviewed the liner status for the impoundments in Illinois reported for the federal CCR rule. I found that the vast majority of Illinois coal ash impoundments submitting reports do not have liners that meet federal requirements. I know that many of the impoundments that did not report are also unlined.

Lastly, copying the published groundwater data into a spreadsheet was surprisingly difficult, as many of the reports were not provided in a machine-readable format and copying data to spreadsheets required using Acrobat's text recognition tool on the documents and continuous quality control to ensure the recognized characters were correct. Having the data in spreadsheet

form is critical to run analytics to better understand or visualize the pollution from coal ash. The proposed rule should require industry to submit machine-readable results. Data sets should be submitted in written <u>and</u> spreadsheet form to allow easy analysis of the data.

II. Structural Stability & Safety Factor Assessment

In 2016, coal ash owners released reports on the safety factors of their coal ash ponds. As I understand it, each coal ash impoundment must meet or exceed a minimum safety factor. This analysis is done for several different loading conditions, which I understand to mean circumstances under which the impoundment might fail.

When owners and operators posted those safety factor reports in 2016, I collected the reports for impoundments in Illinois. While none of the impoundments failed to meet their minimum safety factors, many were very close. Ash Pond No. 1 at Coffeen met the minimum long-term loading safety factor (1.50) exactly, and other ponds, such as the East Ash Pond at Joppa and the Ash Pond at Edwards, were just a small fraction above the minimum requirements. Both Edwards and Joppa were rated as high hazard potential impoundments, which means that a loss of life is likely in the case of failure. Overall, the industry reports I reviewed showed ash ponds at Coffeen, Dallman, Edwards, Joliet 29, Joppa, Kincaid, Newton, and Waukegan to be within 10% of the minimum required safety factor for one or more loading conditions. I am including those reports as attachments to my testimony. (*See* Attachments 1 - 8).

Third party review of safety factor reports is critical to ensure their accuracy. I understand that the calculations that go into safety factor assessments typically require some assumptions to account for the unknowns present in the real world, which could sway the result one way or the other. I know that assumptions are necessary in most engineering assessments. However, given the potential for these assumptions to sway the results of the analysis and how close some of the impoundments are to not meeting their safety factors, a third party must review the assessment to see if the assumptions are reasonable and the calculations are otherwise accurate. Even in situations where there is no ill-intent, engineers can simply make mistakes and a mistake here could have devastating consequences. We need more educated eyes on the reports to protect against such errors or inappropriate assumptions.

Safety factor analyses alone, which provide a snapshot of an impoundment's slope stability at one moment in time, do not account for all structural stability risks at coal ash impoundments. Factors outside such as an eroding river or likely subsidence can rapidly change conditions at an impoundment and threaten collapse regardless of whether safety factors were met not long before. For example, at the Vermilion site, coal ash sits on banks of the Middle Fork and the river is eroding those banks. Likewise, at Vermilion and other coal ash ponds in Illinois, there are old coal mine shafts located below, or near, the impoundments which could collapse, destabilizing the impoundment. This sort of structural stability threat should be included in the scope of things considered for the Illinois rule. Additionally, the eroding river at the Vermilion site is an example of why structural stability cannot be a one-time analysis. As environmental factors change, so do the stability risks.

III. Closure by Cap

While we have waited many long years for state rules regarding coal ash clean-up and closure, coal ash impoundments in Illinois have been closing. To my knowledge, Venice, Hutsonville, Crawford, Meredosia, Duck Creek, Hennepin, Coffeen, Baldwin, Wood River, and Grand Tower all have approved closure plans for one or more coal ash impoundments on site. In all cases (with the possible exception of Crawford where I don't know what happened), a cap has been part of the approved closure plan. Illinois EPA has yet to approve a closure plan that requires closure by removal of all coal ash impoundments at a site. In part, this may be due to the way I've seen Illinois EPA regulate coal ash sites, which is to request more information about industry proposals until the company refines their solution to something that Illinois EPA can accept. If this back and forth becomes a stalemate, Illinois EPA might deploy its only prescriptive tool – an enforcement action. In my opinion, this regulatory method incentivizes industry to do a lackluster job in their initial offering, trying to find the cheapest option that will get approval and having no real reason to do a comprehensive analysis. Industry can start low and slowly raise the bar until Illinois EPA approves. The solution to this problem is rules that establish comprehensive requirements for the alternatives analysis such that all the options are fully vetted from the outset. If the Agency and the public have the opportunity to review the full set of closure or corrective action options in one comprehensive document, they will be far better equipped to evaluate which options best protect public health and the environment and require that the best option be chosen.

IV. Accounting for Coal Ash in Illinois

It is critical that the coal ash rules require accessible and comprehensive documentation of coal ash in Illinois. From the public's perspective, tracking the coal ash problem in Illinois has been challenging. When I first started at Prairie Rivers Network in early 2015, I searched for a database of coal ash information to give a comprehensive look at the coal ash situation in Illinois. I was looking to answer basic questions: where are the ponds? What are their boundaries? How much ash is stored at each site? How many are at each site? No such database existed. I had to pieces things together through web searches and FOIA requests. Eventually, the federal CCR rule started to provide useful information, but the coverage was still incomplete.

I accumulated answers through FOIA requests to Illinois EPA and the federal CCR rule disclosures. While I found some answers about coal ash sites in Illinois, the information I collected was incomplete and occasionally contradictory, such as information concerning the boundaries of the coal ash ponds. For example, at Hennepin, I've seen the ponds marked in two different ways. (*See* Attachment 9, Hennepin US EPA Assessment, and Attachment 10, Hennepin History of Construction). Additionally, some reports and documentation reveal old coal ash ponds - areas which are now growing trees - that pose an unknown threat. For example,

the US EPA Assessment identifies an old "capped" pond at the Joppa plant (Attachment 11, Joppa US EPA Assessment), and there's another pond labeled "old ash pond (decommissioned)" at the closed Meredosia site. (Attachment 12, Meredosia US EPA Assessment). In fact, in a 2016 closure plan for the other two ponds at Meredosia, the consultant seems unsure about anything related to the pond and dismisses it out of hand: "A third ash pond referred to as the 'Old Ash Pond' was reportedly closed, and will not be further discussed in this report." (Attachment 13, Meredosia 2016 closure plan). The final rules must close these knowledge gaps and allow the public to see a clear inventory of coal ash in Illinois, so the risks can be tracked and accounted for.

For this rule, documents that are required to be posted online should be clear and easily accessible. Having one website vs. two websites is less important than clarity. If there is only one website, the Board should require that the website itself indicate the documents that are compliance documents for the federal rules and the documents that are compliance documents for the federal rules and the documents that are compliance documents for the state rules. Therefore, it may be easier to have two websites, but those sites should link to each other so that navigating between them is simple. Another major accessibility concern is requiring an account to view the information. This is an unnecessary barrier that stifles public access to the documentation. Requiring an account and log-in information to view the page should not be allowed (even if anyone could theoretically get an account).

V. The Value of Public Input

Public input is a necessary part of the regulatory process. I've seen firsthand how public input can help inform Illinois EPA's and other agencies' regulatory decisions in ways that lead to better protection of communities and the environment. In 2012, Illinois EPA issued Dynegy a violation notice for groundwater pollution caused by the coal ash ponds at the Vermilion Power Station. However, the violation notice did not lead to Agency action and was left unresolved for years. It wasn't until 2018, six years after the violation notice was issued, that an email from a concerned member of the public spurred Illinois EPA into inspecting the seeps at the site. That email came from Pam Richart, who visited the site frequently by canoe and was able to document the seeps and the eroding riverbank, raising the alarm to the agency in a photodocumented email. Following her email, Illinois EPA sent inspectors, issued a second violation notice, and has referred the case to the attorney general. Without the persistence of the public acting as a watchdog, I fear the agency would not have been convinced to take these steps to address the pollution along the Middle Fork.

Also at the Middle Fork site, community voices raised concerns when the Army Corps proposed a Nationwide Permit¹ for a plan to dump a huge volume of rocks on the banks of the river to attempt to stop erosion. Community members noted that the pile of rocks would have marred the scenic value of the river, going against the National Scenic River designation and leaving the real

¹ A Nationwide Permit is a fast-tracked version of the Army Corp's 404 Permit.

problem at the site unsolved. Following the public outcry, the Army Corps took a second look at the bank armoring proposal and realized that there was more to the proposal and the site. The Army Corps pressed Dynegy for more answers about their proposal, and after some back and forth between the Corps and Dynegy, the company decided to withdraw their proposal.

Another example of the impact of public scrutiny concerns Midwest Generation's proposal to dump coal ash from several coal plants into the Lincoln Stone Quarry. Members of the public caught wind of this proposal in summer 2017. Multiple interested parties submitted comments on the proposal, including the Will County Land Use Department (*see* Attachment 14) and a coalition of environmental groups that included Prairie Rivers Network and a local group of volunteer activists called Citizens Against Ruining the Environment (*see* Attachment 15). The comments raised concern about the risks of adding more waste to a facility that was already leaking. Eventually, Midwest Generation withdrew their proposal to dump more ash into Lincoln Stone Quarry. In my opinion, this was due to the public comments that were submitted, as I am not aware of any other reason why the proposal was withdrawn.

In fact, without the relentless effort of members of the public, we probably wouldn't be here at this rulemaking today. Residents of Vermilion and Champaign county worked to inform Senator Scott Bennett, Representative Carol Ammons, and Representative Mike Marron about the dangers of coal ash at the Vermilion Power Station and opened their eyes to the problem of coal ash. These legislators went on to be the champions of the Coal Ash Pollution Prevention Act. Members of the public, largely from coal ash communities, came to Springfield for the release of Cap and Run, and again on coal ash lobby day,² to speak to their legislators about the need for Illinois to take charge of its own destiny for coal ash impoundments, rather than rely solely on federal government. These voices helped build the momentum to pass the Coal Ash Pollution Prevention Act with bi-partisan support, leading to this rulemaking.

Illinois EPA staff, both during the listening sessions and at the January stakeholder meeting, have attested to the benefit of public input in their draft rules.

Public scrutiny can also help keep the public and the environment safe by creating more opportunities for technical review. Such review supplements the Agency's efforts when it does not have the time or resources to dig deep. For example, Steven Campbell, a hydrogeologist, submitted a public comment to the US EPA regarding changes to the 5ft uppermost aquifer criteria in the federal rule. (Attachment 16). In his comment, he highlighted the dynamic nature of groundwater tables and used the Waukegan Power Station in Illinois, which is experiencing a rising groundwater table, as an example of why location standards need to be continually reassessed. Mr. Campbell raised significant concerns regarding Midwest Generation's claims that

 $^{^{2}}$ Coal ash lobby day was an effort to facilitate the public engaging their legislators in Springfield by bringing folks to the capital on the same day.

they meet the aquifer location restriction (*see* Attachment 17) even though the uppermost aquifer is clearly within 5 feet of the coal ash, and elevated an important issue related to coal ash protections to regulators' attention. This sort of technical analysis submitted by concerned members of the public can help the Agency –or the Board – make better, more informed decisions. To give another example, the Illinois EPA reviewed (and ultimately approved) the closure plan for impoundments on the east side of the Hennepin Power Station last year. Written comments that I provided for the closure plan prompted the Illinois EPA to solicit additional information from Vistra. In short, additional scrutiny can help identify weaknesses in industry's proposals and can help protect the public.

VI. Transportation by Rail and Barge

Another area that I have looked into as part of my work at Prairie Rivers Network is the transportation options that might be available for moving coal ash when the pond is closed by removal – that is, by excavating the ash and moving it to a safer place. In many of the closure plans that I have reviewed, trucks have been the only transportation method assessed as part of an assessment of removal. Using free spatial data available through ESRI's online database, I mapped the approximate locations of rail spurs relative to coal ash impoundments and landfills. (See Attachment 18). The goal of the exercise was to better understand how many of the power plants in Illinois have relatively easy access to rail. I found that Waukegan, Will County, Joliet 9 (Lincoln Stone Quarry), Hennepin, Edwards, Powerton, Duck Creek, Havana, Meredosia, Dallman, Kincaid, Coffeen, Wood River, Venice, Newton, Baldwin, Prairie State Generating Station, Marion, and Joppa all have rail spurs located on the property (in most cases) or less than a mile way (in a few cases). Given the real opportunity for rail transport at many of these sites and different pollution and safety risks of transport by truck versus other options, the rules should require industry to consider rail as one of multiple transportation options when evaluating removal of coal ash. Additionally, many of the sites are along major rivers with significant barge traffic, including the Illinois and the Mississippi, indicating that transporting coal ash by barge is likely a reasonable alternative to consider as well at many sites.

VII. Fugitive Dust

I understand there are risks related to moving and transporting coal ash for both workers and communities, including those next to the ash ponds, along transportation routes, and near the site ultimately receiving the ash. For example, I have read Ron Sahu's report "Comments on Fugitive Dust Management and Lack of Air Monitoring As Part of Coal-Ash Removal Project at NIPSCO Michigan City Generating Station (MCGS)" (Attachment 19), which stated that ash could become airborne during "removal from the ponds; processing after removal from the ponds such as drying to reduce moisture content; loadout onto haul trucks; during transportation; and during placement at the destination." The report identifies dust (PM₁₀ and PM_{2.5}) and radioactive material as risks during removal and identifies the need for detailed dust control plans and dust

monitoring to accompany these activities. The need is also present in Illinois and the rules should provide for robust monitoring and detailed, specific dust controls.

VIII. Groundwater Contact

Documents that I have reviewed when gathering data about coal ash impoundments in Illinois make clear that groundwater is contacting coal ash at many of the coal ash impoundments in Illinois. The 2018 groundwater modeling report for the Vermilion Power Station clearly states that "areas of ash within the [North Ash Pond System] and [Old East Ash Pond] are in contact with groundwater." (Attachment 20, p. 2). A slide in a presentation that Agency staff gave to Senator Bennett last year, at a meeting that I attended, states that the capped ash ponds at the Venice coal plant are in intermittent contact with groundwater. (See Attachment 21, Except of R. Cobb Presentation).³ Additionally, a technical memorandum attached to the original 2010 closure plans also makes that groundwater contact clear: "Boron mass enters groundwater via two mechanisms: year-round leaching as precipitation and snow melt water percolates vertically through the ash, and occasional leaching when groundwater elevation rises to a level higher than the base of ash and flows horizontally through the material." (Attachment 22 – Technical Memorandum 6. Groundwater Modeling of Venice Former Ash Ponds, p. 5). The Hutsonville Closure Plan also identifies groundwater flowing through coal ash: "Where coal ash is encountered within the shallow groundwater zone. groundwater flows horizontally through the ash. Only Ash Pond D was deep enough to have horizontal groundwater migration through the coal ash" and illustrates the point with a graphic on the following page. (Attachment 23, Excerpt of Hutsonville Closure Plan Pond A, pdf pp. 281, 282). At Lincoln Stone Quarry, it is well known that coal ash is in contact with groundwater (see Attachment 14, Will County Land Use Department Comments) and the quarry failed the aquifer location restriction by 50 feet (see Attachment 24, LSQ location restrictions). In fact, it is my understanding that Midwest Generation must run pumps continuously to attempt to stop pollution from spreading off-site. The pumps pull the groundwater pollution plume back and pump the water back into the quarry. Instances like this make me wary of pump-based solutions to pollution. For how long do we expect those pumps to run? Forever?

One challenge I've faced in trying to determine if groundwater is intersecting with coal ash is a lack of data. The bottom elevation of the coal ash, meaning the lowest elevation that you can find coal ash at a particular point in space, is often not reported. The bottom elevation of coal ash ponds is used to determine if groundwater contact is occurring. By comparing the ash bottom elevation to the groundwater surface measurements (which are available in the federal CCR reporting and other locations), it is often possible to determine whether groundwater contact is present. A spatial map of the bottom elevation of the coal ash in impoundments should be included with the groundwater elevation measurements reported in hydrogeological

³ In contrast, the same presentation included a slide stating that ash ponds at the Havana plant are not in contact with groundwater. *See* Attachment 21 at p. 2.

investigations. This information is critical for the public, as well as the Agency, to understand the risks of coal ash ponds now and in the future for Illinois. The federal rules require a determination of the distance between coal ash and the uppermost aquifer, so industry should have this information already available at sites where the rule applies. In fact, many impoundments in Illinois have already posted documentation showing that the required separation between the impoundment and the aquifer is not present. (*See* Attachments 24 - 33).

IX. Flooding and Floodplains

Another way ash is exposed to water is flooding. Rising river levels can raise the local groundwater table into the coal ash ponds. The impoundment does not need to be overtopped by floodwaters for coal ash to be exposed. Flooding also leads to rising groundwater from below. For example, the satellite image currently used by ArcGIS's surface imagery shows that the coal ash ponds at the Pearl Station were nearly underwater in a 2013 flood. In the satellite image, the impoundment has become an island in the floodplain. The image can be seen on page 13 of the Coal Ash Rail and Landfill report I put together. (*See* Attachment 18).

Using the FEMA 100-year floodplain maps available through the ArcGIS online database, I mapped the FEMA 100-year and 500-year floods (1% and 0.2% chance floods) compared to coal ash ponds in Illinois. While I was not able to find FEMA 100-year flood data for every coal ash site in Illinois, the maps I made show that Dallman, Grand Tower, Hennepin, Hutsonville, Meredosia, Pearl Station, and Vermilion would all be inundated partially or completely according to the FEMA 100-year floodplain maps. (*See* Attachments 34-40).

I am concerned that these risks will only grow with time. I have attended presentations and reviewed documentation that states that floods will change, and are changing, with the changing climate. The Illinois State Water Survey evaluates rainfall frequency in a document titled Bulletin 70. In March 2019, the ISWS published an update to Bulletin 70 titled "Frequency Distributions of Heavy Precipitation in Illinois: Updated Bulletin 70". In the document, the ISWS notes that, heavy precipitation events are anticipated to increase in Illinois. (*See* Attachment 41). The Midwest section of the National Climate Assessment notes that "Increasing precipitation, especially heavy rain events, has increased the overall flood risk, causing disruption to transportation and damage to property and infrastructure. (*See* Attachment 42). Therefore, the 1% chance flood tomorrow will be bigger than the 1% flood today. If so, the risk of coal ash in floodplains being exposed to water will grow.

X. Coal Ash Outside of Impoundments

The Board must develop rules regulating more than just coal ash *impoundments*. Coal ash ends up in coal ash landfills, dumps, piles at coal mines, various re-use sites, and more. All of these types of coal ash sites have problems. We've seen the groundwater impacts from coal ash landfills due to the federal rule reporting. I've heard concerns from communities living

downwind of a coal ash pile stored at a coal mine who have seen their animals get sick since the piles started. I know, from our legal action against NRG, that coal ash does not always end up in impoundments and can be found in other places on power plant sites. I've seen old coal ash sites marked on maps of power plant sites, such as the "old ash pond (decommissioned)" at Meredosia, that are not even counted in Illinois EPA's latest inventory of ponds. I've seen satellite images of a huge pile of coal ash at a re-use facility near Powerton where the ash is seemingly strewn along the railroad tracks. These types of coal ash sites pose all the same problems that we find at the coal ash impoundments. The Board should propose comprehensive regulations that solve the coal ash problem.

Signed:

andres Rohn

Dated: August 27, 2020

ATTACHMENT LIST FOR TESTIMONY OF ANDREW REHN

- 1. Coffeen Ash Pond Safety Assessment
- 2. Dallman Safety Assessment
- 3. Edwards Safety Assessment
- 4. Joliet 29 Safety Factor
- 5. Joppa Safety Assessment
- 6. Kincaid Safety Assessment
- 7. Newton Safety Assessment
- 8. Waukegan Safety Assessment
- 9. Hennepin US EPA CCW Assessment Report
- 10. Hennepin History of Construction
- 11. Joppa US EPA Assessment
- 12. Meredosia US EPA Assessment
- 13. 2016 Meredosia Closure Plan
- 14. Will County Land Use Department Comments
- 15. Comments on MWG application for LSQ Permit
- 16. Campbell Expert Report EPA 2020 Proposed Permitting Rule for CCR Facilities
- 17. Waukegan Location Standards
- 18. Coal Ash Rail and Landfill Report
- 19. Final MCGS Dust and Air Monitoring
- 20. Groundwater Monitoring and Modeling Report Vermilion
- 21. Excerpt of Illinois EPA's Ash Impoundment Strategy Progress Report 2019
- 22. Venice Technical Memorandum No. 6
- 23. Excerpt of Hutsonville Closure Plan Pond A
- 24. Lincoln Stone Quarry Location Restrictions
- 25. Coffeen Location Restriction Demonstration Ash Pond No. 1 2018
- 26. Coffeen Location Restriction Demonstration GMF Gypsum S 2018
- 27. Coffeen Location Restriction Demonstration GMF Recycle Pond 2018
- 28. Dallman Lakeside Location Restrictions
- 29. 2018 E.D. Edwards Location Restriction Demonstration Ash Pond
- 30. 2018 Havana Location Restriction Demonstration East Ash Pond Cells 1, 2, 3, 4
- 31. 2018 Hennepin Location Restriction Demonstration East Ash Pond
- 32. 2018 Kincaid Location Restriction Demonstration Ash Pond
- 33. Will County Location Restrictions
- 34. Dallman Floodplain Map
- 35. Grand Tower Floodplain Map
- 36. Hennepin Floodplain Map
- 37. Hutsonville Floodplain Map
- 38. Meredosia Floodplain Map
- 39. Pearl Station Floodplain Map
- 40. Vermilion Floodplain Map
- 41. Frequency Distributions of Heavy Precipitation in Illinois: Updated Bulletin 70
- 42. Impacts, Risks, and Adaptation in the United States: Fourth National Climate Assessment, Volume II

CERTIFICATE OF SERVICE

The undersigned, Jennifer L. Cassel, an attorney, certifies that I have served by email the Clerk and by email the individuals with email addresses named on the Service List provided on the Board's website, available at <u>https://pcb.illinois.gov/Cases/GetCaseDetailsById?caseId=16858</u>, a true and correct copies of the the **TESTIMONY OF ANDREW REHN** and **ATTACHMENTS** before 5 p.m. Central Time on August 27, 2020. The number of pages in the email transmission is 1,804 pages.

Respectfully Submitted,

hof I lul

Jennifer Cassel (IL Bar No. 6296047) Earthjustice 311 S. Wacker Dr., Suite 1400 Chicago, IL 60606 (312) 500-2198 (phone) jcassel@earthjustice.org

SERVICE LIST

Don BrownClerk of the BoardDon.brown@illinois.gov_IllinoisPollution Control Board JamesR. Thompson Center Suite 11-500100 West RandolphChicago, Illinois 60601Virginia I. Yang - Deputy Counselvirginia.yang@illinois.govNick San Diego - Staff Attorneynick.sandiego@illinois.govRobert G. Moolbob.mool@illinois.govPaul Mauer - Senior Dam Safety Eng.Paul.Mauer@illinois.govRenee Snow - General Counselrenee.snow@illinois.govIllinois Department of Natural ResourcesOne Natural Resources WaySpringfield, IL 62702-1271	Christine M. Zeivel <u>Christine.Zeivel@illinois.gov</u> Stefanie Diers <u>Stefanie.Diers@illinois.gov</u> Illinois Environmental Protection Agency 1021 North Grand Avenue East P.O. Box 19276 Springfield, IL 62794-9276 Matthew J. Dunn, Chief <u>mdunn@atg.state.il.us</u> Stephen Sylvester Sr. Asst. Attorney General <u>ssylvester@atg.state.il.us</u> Andrew Armstrong, Chief <u>aarmstrong@atg.state.il.us</u> Kathryn A. Pamenter <u>KPamenter@atg.state.il.us</u> 69 West Washington Street, Suite 1800 Chicago, IL 60602
Deborah Williams Regulatory Affairs Director <u>Deborah.Williams@cwlp.com</u> City of Springfield Office of Utilities 800 E. Monroe, 4th Floor Municipal Building East Springfield, IL 62757-0001	Kim Knowles <u>Kknowles@prairierivers.org</u> Andrew Rehn <u>Arehn@prairierivers.org</u> 1902 Fox Dr., Ste. 6 Champaign, IL 61820
Faith Bugel <u>fbugel@gmail.com</u> 1004 Mohawk Wilmette, IL 60091	Jeffrey Hammons <u>Jhammons@elpc.org</u> Kiana Courtney <u>KCourtney@elpc.org</u> Environmental Law & Policy Center 35 E. Wacker Dr., Ste. 1600 Chicago, IL 60601

Keith Harley <u>kharley@kentlaw.edu</u> Daryl Grable <u>dgrable@clclaw.org</u> Chicago Legal Clinic, Inc. 211 W. Wacker, Suite 750 Chicago, IL 60606	Michael Smallwood <u>Msmallwood@ameren.com</u> 1901 Choteau Ave. St. Louis, MO 63103
Mark A. Bilut <u>Mbilut@mwe.com</u> McDermott, Will & Emery 227 W. Monroe Street Chicago, IL 60606-5096 Susan M. Franzetti	Abel Russ, Attorney <u>aruss@environmentalintegrity.org</u> Environmental Integrity Project 1000 Vermont, Ave NW, Ste. 1100 Washington, DC 20005 Alec M Davis, Executive Director <u>adavis@ierg.org</u>
Sf@nijmanfranzetti.com Kristen Laughridge Gale kg@nijmanfranzetti.com Vincent R. Angermeier va@nijmanfranzetti.com Nijman Franzetti LLP 10 S. Lasalle St., Ste. 3600 Chicago, IL 60603	Kelly Thompson <u>kthompson@ierg.org</u> IERG 215 E. Adams St. Springfield, IL 62701
Walter Stone, Vice President <u>Walter.stone@nrg.com</u> NRG Energy, Inc. 8301 Professional Place, Suite 230 Landover, MD 20785	Cynthia Skrukrud <u>Cynthia.Skrukrud@sierraclub.org</u> J Jack.Darin@sierraclub.org_Christine Nannicelli <u>christine.nannicelli@sierraclub.org</u> Sierra Club 70 E. Lake Street, Ste. 1500 Chicago, IL 60601-7447
Stephen J. Bonebrake <u>sbonebrake@schiffhardin.com</u> Joshua R. More <u>jmore@schiffhardin.com</u> Ryan C. Granholm <u>rgranholm@schiffhardin.com</u> Schiff Hardin, LLP 233 S. Wacker Dr., Ste. 7100 Chicago, IL 60606-6473	Jennifer M. Martin <u>Jennifer.Martin@heplerbroom.con</u> Melissa Brown <u>Melissa.Brown@heplerbroom.com</u> HeplerBroom LLC 4340 Acer Grove Drive Springfield, IL 62711

Alisha Anker, Vice President, Regulatory & Market Affairs <u>aanker@ppi.coop</u> Prairie Power Inc. 3130 Pleasant Runn Springfield, IL 62711	Chris Newman <u>newman.christopherm@epa.gov</u> Jessica Schumaker <u>Schumacher.Jessica@epa.gov</u> U.S. EPA, Region 5 77 West Jackson Blvd. Chicago, IL 60604-3590
Gibson, Dunn, & Crutcher, LLP Michael L. Raiff <u>mraiff@gibsondunn.com</u> 2001 Ross Avenue Suite 2100 Dallas, TX 75201	Earthjustice Jennifer Cassel jcassel@earthjustice.org Thomas Cmar tcmar@earthjustice.org Melissa Legge <u>mlegge@earthjustice.org</u> Mychal Ozaeta <u>mozaeta@earthjustice.org</u> 311 S. Wacker Drive Suite 1400 Chicago, IL 60606
BROWN, HAY, & STEPHENS, LLP Claire A. Manning <u>cmanning@bhslaw.com</u> Anthony D. Schuering <u>aschuering@bhslaw.com</u> 205 S. Fifth Street, Suite 700 Springfield, IL 62705	

The following are attachments to the testimony of Andrew Rehn.

ATTACHMENT 1

Submitted to Illinois Power Generating Company 134 Cips Lane Coffeen, IL 62017

Submitted by AECOM 1001 Highlands Plaza Drive West Suite 300 St. Louis, MO 63110

October 2016

CCR Rule Report: Initial Safety Factor Assessment

For

Ash Pond No. 1

At Coffeen Power Station

1 Introduction

This Coal Combustion Residual (CCR) Rule Report documents that Ash Pond No. 1 at the Illinois Power Generating Company Coffeen Power Station meets the safety factor assessment requirements specified in 40 Code of Federal Regulations (CFR) §257.73(e). Ash Pond No. 1 is located near Coffeen, Illinois in Montgomery County, approximately 0.3 miles east of the Coffeen Power Station. Ash Pond No. 1 serves as the primary wet impoundment basin for bottom ash produced by the Coffeen Power Station.

Ash Pond No. 1 is an existing CCR surface impoundment as defined by 40 CFR §257.53. The CCR Rule requires that the initial safety factor assessment for an existing CCR surface impoundment be completed by October 17, 2016.

The owner or operator of the CCR unit must obtain a certification from a qualified professional engineer stating that the initial safety factor assessment meets the requirements of 40 CFR § 257.73(e). The owner or operator must prepare a safety factor assessment every five years.

2 Initial Safety Factor Assessment

40 CFR §257.73(e)(1)

The owner or operator must conduct initial and periodic safety factor assessments for each CCR unit and document whether the calculated factors of safety for each CCR unit achieve the minimum safety factors specified in (e)(1)(i) through (iv) of this section for the critical cross section of the embankment. The critical cross section is the cross section anticipated to be the most susceptible of all cross sections to structural failure based on appropriate engineering considerations, including loading conditions. The safety factor assessments must be supported by appropriate engineering calculations.

(i) The calculated static factor of safety under the long-term, maximum storage pool loading condition must equal or exceed 1.50.

(ii) The calculated static factor of safety under the maximum surcharge pool loading condition must equal or exceed 1.40.

(iii) The calculated seismic factor of safety must equal or exceed 1.00.

(iv) For dikes constructed of soils that have susceptibility to liquefaction, the calculated liquefaction factor of safety must equal or exceed 1.20.

A geotechnical investigation program and stability analyses were performed to evaluate the design, performance, and condition of the earthen dikes of Ash Pond No. 1. The exploration consisted of hollow-stem auger borings, cone penetration tests, piezometers, and laboratory program including strength, hydraulic conductivity, consolidation, and index testing. Data collected from the geotechnical investigation, available design drawings, construction records, inspection reports, previous engineering investigations, and other pertinent historic documents were utilized to perform the safety factor assessment and geotechnical analyses.

In general, the subsurface conditions at Ash Pond No. 1 consist of medium stiff to stiff lean clay embankment fill, overlying medium stiff to stiff weathered loess clay, overlying a thin zone of very soft clay, which in turn overlies very stiff to hard glacial till. The phreatic surface within the subsurface is typically at the ground surface at the toe of the embankment and near the embankment/foundation interface beneath the crest.

Five (5) representative cross sections were analyzed using limit equilibrium slope stability analysis software to evaluate stability of the perimeter dike system and foundations. The cross sections were located to represent critical surface geometry, subsurface stratigraphy, and phreatic conditions across the site. Each cross section was evaluated for each of the loading conditions stipulated in §257.73(e)(1).

The Soils Susceptible to Liquefaction loading condition, \$257.73(e)(1)(iv), was not evaluated because a liquefaction susceptibly evaluation did not find soils susceptible to liquefaction within the Ash Pond No. 1 dikes. As a result, this loading condition is not applicable to Ash Pond No. 1.

Results of the Initial Safety Factor Assessments, for the critical cross-section for each loading condition, are listed in **Table 1** (i.e., the table identifies the lowest calculated factor of safety for any one of the five analyzed cross sections for each loading condition).

Loading Conditions	§257.73(e)(1) Subsection	Minimum Factor of Safety	Calculated Factor of Safety	
Maximum Storage Pool Loading	(i)	1.50	1.50	
Maximum Surcharge Pool Loading	(ii)	1.40	1.49	
Seismic	(iii)	1.00	1.03	
Soils Susceptible to Liquefaction	(iv)	1.20	Not Applicable	

Table 1 – Summary of Initial Safety Factor Assessments

Based on this evaluation, Ash Pond No. 1 meets the requirements in §257.73(e)(1).

3 Certification Statement

CCR Unit: Illinois Power Generating Company; Coffeen Power Station; Ash Pond No. 1

I, Victor A. Modeer, being a Registered Professional Engineer in good standing in the State of Illinois, do hereby certify, to the best of my knowledge, information, and belief that the information contained in this CCR Rule Report, and the underlying data in the operating record, has been prepared in accordance with the accepted practice of engineering. I certify, for the above-referenced CCR Unit, that the initial safety factor assessment dated October 2016 meets the requirements of 40 CFR §257.73(e).

A MODER JR.

Printed Name

Date

About AECOM

AECOM (NYSE: ACM) is a global provider of professional technical and management support services to a broad range of markets, including transportation, facilities, environmental, energy, water and government. With nearly 100,000 employees around the world, AECOM is a leader in all of the key markets that it serves. AECOM provides a blend of global reach, local knowledge, innovation, and collaborative technical excellence in delivering solutions that enhance and sustain the world's built, natural, and social environments. A Fortune 500 company, AECOM serves clients in more than 100 countries and has annual revenue in excess of \$19 billion.

More information on AECOM and its services can be found at <u>www.aecom.com</u>.

1001 Highlands Plaza Drive Wes Suite 300 St. Louis, MO 63110 1-314-429-0100 The following are attachments to the testimony of Andrew Rehn.

ATTACHMENT 2

City Water, Light & Power Ash Impoundments Springfield, Sangamon County, Illinois

Initial Safety Factor Assessment for Coal Combustion Residuals Surface Impoundments

October 2016

Prepared for: City Water, Light & Power 3100 Stevenson Drive Springfield, Illinois 62703

Prepared by: **ANDREWS** ENGINEERING INC

3300 Ginger Creek Drive Springfield, IL 62711 Tel: (217) 787-2334; Fax: (217) 787-9495

TABLE OF CONTENTS

1.		1
2.	BACKGROUND	1
3.	GEOMETRY OF THE STRUCTURES	2
4.	GEOTECHNICAL INFORMATION	2 2 3 3
5.	SLOPE STABILITY ANALYSIS 4 5.1 Lakeside Ash Pond Slope Stability 4 5.1.1 Long-Term Static Slope Stability Analysis 4 5.1.2 Short-Term Static Slope Stability Analysis 4 5.1.3 Seismic Slope Stability Analysis 4 5.2 Dallman Ash Pond Slope Stability 4 5.2.1 Long-Term Static Slope Stability 4 5.2.2 Short-Term Static Slope Stability 4 5.2.3 Seismic Slope Stability 4 5.2.3 Seismic Slope Stability 4 5.2.3 Seismic Slope Stability 4	444555555
6.	SUMMARY	6

TABLES

TABLE 1:	Lakeside Ash Pond	.3
TABLE 2:	Dallman Ash Pond	.3
TABLE 3:	Slope Stability Results	.6

APPENDICES

APPENDIX A:	Site Map
APPENDIX B:	Lakeside Soils Logs and Cross Section
APPENDIX C:	Fly Ash Technical Papers
APPENDIX D:	Dallman Boring Log and Cross Section
APPENDIX E:	USGS Earthquake Hazards Program Probabilistic Seismic Hazard Analysis
APPENDIX F:	Lakeside Ash Pond Static Slope Stability Analysis
APPENDIX G:	Dallman Ash Pond Slope Stability Analysis

1. INTRODUCTION

City Water, Light and Power (CWLP) Lakeside Ash Pond and Dallman Ash Pond are coal combustion residuals (CCR) surface impoundments. An Initial Safety Factor Assessment of the CCR surface impoundments was conducted as required by 40 CFR Part 257.73:

- 257.73(e): Periodic safety factor assessments. (1) The owner or operator must conduct an initial and periodic safety factor assessments for each CCR unit and document whether the calculated factors of safety for each CCR unit achieve the minimum safety factors specified in paragraphs (e)(1)(i) through (v) of this section for the critical cross section of the embankment. The critical cross section is the cross section anticipated to be the most susceptible of all cross sections to structural failure based on appropriate engineering considerations, including loading conditions. The safety factor assessments must be supported by appropriate engineering calculations.
- 257.73(f): (1) Initial assessments. Except as provided by paragraph (f)(2) of this section, the owner or operator of the CCR unit must complete the initial assessments required by paragraphs (a)(2), (d), and (e) of this section no later than October 17, 2016. The owner or operator has completed an initial assessment when the owner or operator has placed the assessment required by paragraphs (a)(2), (d), and (e) of this section in the facility's operating record as required by § 257.105(f)(5), (10), and (12).

Analysis is performed herein for the Initial Safety Factor Assessment of the existing ash ponds at Springfield City Water, Light and Power, Lakeside and Dallman Ash Ponds, Springfield, Illinois, as required per 40 CFR 257.73(e). Based upon historical geotechnical data and the existing conditions of the ash ponds, all factors of safety exceed the regulatory minimums as demonstrated within this report.

Information reviewed for this report includes the following documents:

- Coal Ash Impoundment Site Assessment Final Report (May 2011)
- Historical Aerial Photographs (April 1995 March 2014)
- Engineering Report: Proposed Embankment Modification; CWLP Ash Disposal Area (July 1987).
- Construction Grading Plan for the Dallman Ash Pond (August 1976)

2. BACKGROUND

CWLP operates a series of ash and lime sludge clarification or settling ponds east of the power plant complex in Springfield, Illinois. The ponds are operated under National Pollutant Discharge Elimination System (NPDES) Permit Number IL0024767.

The Lakeside Ash Pond is primarily a diked embankment with some incising along the east perimeter and was placed into service prior to 1958. The original Lakeside Ash Pond was been divided into four separate ponds since it was expanded vertically in 1988: three lime softening ponds and the settling pond. The current Lakeside Ash Pond is approximately 27.6 acres and ceased receiving ash in 2009.

The second impoundment, the Dallman Ash Pond, which is a diked embankment, was placed into service in approximately 1976 and is approximately 34.5 acres. Fly ash and bottom ash are sluiced to the Dallman Ash Pond with raw lake water.

Settled water from both the Dallman Ash Pond and Lakeside Ash Pond flow into opposite sides of a Clarification Pond before being discharged, typically, to Sugar Creek at Outfall 004.

3. GEOMETRY OF THE STRUCTURES

According to personal interviews with CWLP staff, the most recent change made to the CCR surface impoundment was a vertical expansion to the Lakeside Ash Pond system in 1988. The vertical expansion consists of berms built on top and inside of the existing embankments in such a way that the toe of the outer slope of the expansion berms match up with the top of the inner slope of the existing embankments, typically identified as upstream construction. The vertical expansion berms are approximately ten feet in height.

A site map drawing containing an aerial photograph and approximate boundaries for all of the CWLP CCR Units, including the ash and lime softening ponds, is provided in Appendix A.

No changes to the geometry of the structures are applicable for this report. No changes are apparent due to structure movement or deformation.

4. GEOTECHNICAL INFORMATION

4.1 Lakeside Ash Pond Geotechnical Data

A review of the historical documents found a previous geotechnical investigation and stability analysis, which was conducted prior to the upstream construction of Lakeside Ash Pond. The results of that geotechnical investigation are utilized within this assessment of the safety factors. Additionally, a literature review of technical papers was conducted to determine the geotechnical parameters for the fly ash within the impoundments. Provided in Table 1 are highly conservative geotechnical parameters based upon the previous geotechnical investigation utilized in the static and seismic slope stability model.

Included in Appendix B are copies of the historical soils logs and cross sections that support the geotechnical parameters provided in Table 1. Technical papers supporting the ash geotechnical parameters are included in Appendix C.

TABLE 1	
---------	--

Soil Decorintion	Density Total Strengths		(Short Term)	Effective Strengths (Long Term)	
Soli Description	(pcf)	φ (degrees)	c (psf)	φ' (degrees)	c (psf)
Ash	100	15	0	25	0
Embankment	120	0	1,400	32	145
Sandy Silty Clay w/Clayey Silt	120	0	1,800	32	190
Sandy Silty Clay	120	0	1,000	32	190
Shale	130	0	2,000	0	2,000

Lakeside Ash Pond

4.2 Dallman Ash Pond Geotechnical Data

A review of the historical documents revealed the original construction plans, with cross sections provided, was completed. More recent site investigations have been conducted in the area during the installation of piezometers, which provide the stratigraphic and in situ strengths of earthen materials that correlate well with the Lakeside Ash Ponds geotechnical data. The historical data have been used to develop conservative geotechnical parameters for slope stability analysis as provided below in Table 2.

Included in Appendix D are copies of the boring log and cross section that support the geotechnical parameters provided in Table 2.

Soil Description	Density		Total Strengths (Short Term)		Effective Strengths (Long Term)	
Soli Description	(pcf)	φ (degrees)	c (psf)	φ' (degrees)	c (psf)	
Ash	100	15	0	25	0	
Embankment	120	0	1,400	32	145	
Rip-Rap	140	40	0	40	0	
Silty Clay	120	0	1,800	32	190	
Clayey Silt	120	0	1,400	32	190	
Sandy Silty Clay	120	0	1,000	32	190	
Sand w/Silt	120	34	0	34	0	
Shale	130	0	2,000	0	2,000	

TABLE 2

Dallman Ash Pond

4.3 Seismic Ground Motion

CWLP is susceptible to potential seismic activity as provided by the USGS Earthquake Hazards Program. Included in Appendix E of this geotechnical engineering report is the 2008 National Seismic Hazard Mapping Program's Probabilistic Seismic Hazard Analysis for the site (Latitude 39.762 North, Longitude 89.597 West). The Peak Horizontal Ground Acceleration is approximately 0.09965 g. The maximum acceleration of (aHmax = 0.10g) was selected for use in stability calculations.

5. SLOPE STABILITY ANALYSIS

The static and seismic slope stability model utilized for the following analysis was the Morgenstern and Price Circular Search Method within the Slope/W computer-based slope stability modeling software. Morgenstern and Price satisfies all conditions of equilibrium.

The periodic safety factor assessment requires that each CCR unit document whether the calculated factors of safety for each CCR unit achieve the minimum safety factors. The calculated static factor of safety under the long-term, maximum storage pool loading condition must equal or exceed 1.50. The calculated static factor of safety under the maximum surcharge pool loading condition must equal or exceed 1.40. The calculated seismic factor of safety must equal or exceed 1.00. For dikes constructed of soils that have susceptibility to liquefaction, the calculated liquefaction factor of safety must equal or exceed 1.20.

The Lakeside and Dallman Ash Ponds are not susceptible to liquefaction since the embankments are constructed of a sandy silty clay, thus analyses for each are not included below. Liquefaction occurs in fine grained non-cohesive soils. The embankments at CWLP are constructed of cohesive soils.

5.1 Lakeside Ash Pond Slope Stability

The slope stability analysis was performed on a critical cross section, previously identified as Section 2 in the Engineering Report: Proposed Embankment Modification; CWLP Ash Disposal Area (July 1987)., Based upon a review of this report and existing conditions, Section 2 appears to remain the critical cross section. Section 2 is located on the north side of the Lakeside Ash Pond next to the Clarification Pond. For a very conservative analysis, the slope was analyzed as if the Clarification Pond was drained and dredged back to the pre-existing grades of approximately 535 feet MSL.

The Lakeside Ash Pond is not susceptible to liquefaction since the embankment is constructed of a sandy silty clay; thus, analysis is not included below.

5.1.1 Long-Term Static Slope Stability Analysis

The long-term static slope stability analysis was performed on the Lakeside Ash Pond cross section using the geotechnical parameters as provided in Table 1. The long-term analysis utilizes the effective shear strength parameters, which are the drained condition. The long-term static slope stability analysis found that the factor of safety for the most critical failure surface was 1.532. The critical failure surface and stability report are included in Appendix F-1. This analysis verifies that Lakeside exceeds the factor of safety for the long-term, maximum storage pool loading condition and the maximum surcharge pool loading condition since the analysis was performed filled with ash and the pool elevation matching the top of the embankment.

5.1.2 Short-Term Static Slope Stability Analysis

The short-term static slope stability analysis was performed on the Lakeside Ash Pond cross section using the geotechnical parameters as provided in Table 1. The short-term analysis utilizes the total shear strength parameters, which are the undrained condition. The short-term static slope stability analysis found that the factor of safety for the most critical failure surface was 1.640. The critical failure surface and stability report are included in Appendix F-2.

5.1.3 Seismic Slope Stability Analysis

The seismic slope stability analysis was performed on the Lakeside Ash Pond cross section using the geotechnical parameters as provided in Table 1. The seismic analysis utilizes the total shear strength parameters, which are the undrained condition since a seismic event occurs in a short period of time. In addition, a horizontal acceleration of 0.10g was utilized within the modeling to represent the peak horizontal ground acceleration anticipated for CWLP. The seismic slope stability analysis found that the factor of safety for the most critical failure surface was 1.260. The critical failure surface and stability report are included in Appendix F-3. This analysis verifies that Lakeside exceeds the seismic factor of safety with maximum surcharge pool loading condition.

5.2 Dallman Ash Pond Slope Stability

The slope stability analysis was performed on a critical cross section based upon a review of the historical construction diagrams, cross sections and the available stratigraphic data. Section 10+00 is located on the north side of the Dallman Ash Pond near the relocated Sugar Creek. For a very conservative analysis, the slope was analyzed as if Sugar Creek had nearly zero flow at approximately 520 feet MSL.

5.2.1 Long-Term Static Slope Stability Analysis

The long-term static slope stability analysis was performed on the Dallman Ash Pond cross section using the geotechnical parameters as provided in Table 2. The long-term analysis utilizes the effective shear strength parameters, which are the drained condition. The long-term static slope stability analysis found that the factor of safety for the most critical failure surface was 2.245. The critical failure surface and stability report are included in Appendix G-1. This analysis verifies that Dallman exceeds the factor of safety for the long term, maximum storage pool loading condition and the maximum surcharge pool loading condition since the analysis was performed filled with ash and the pool elevation matching the top of the embankment.

5.2.2 Short-Term Static Slope Stability Analysis

The short-term static slope stability analysis was performed on the Dallman Ash Pond cross section using the geotechnical parameters as provided in Table 2. The short-term analysis utilizes the total shear strength parameters, which are the undrained condition. The short-term static slope stability analysis found that the factor of safety for the most critical failure surface was 2.897. The critical failure surface and stability report are included in Appendix G-2.

5.2.3 Seismic Slope Stability Analysis

The seismic slope stability analysis was performed on the Dallman Ash Pond cross section using the geotechnical parameters as provided in Table 2. The seismic analysis utilizes the total shear strength parameters, which are the undrained condition since a seismic event occurs in a short period of time. In addition, a horizontal acceleration of 0.10g was utilized within the modeling to represent the peak horizontal ground acceleration anticipated for CWLP. The seismic slope stability analysis found that the factor of safety for the most critical failure surface was 1.754. The critical failure surface and stability report are included in Appendix G-3. This analysis verifies that Dallman exceeds the seismic factor of safety with maximum surcharge pool loading condition.

6. SUMMARY

The analyses indicate that Lakeside and Dallman Ash Ponds provide factors of safety equal to or greater than minimum values as required by 40 CFR 257.73(e). This is predicated upon the assumption that cohesive and frictional shear strengths of materials meet or exceed those used in the analyses. Table 3 below provides a summary of the slope stability results.

TABLE 3

Slope Stability Results

Cross Section	Stability Model Results	40 CFR 257.73 Minimum F.S.
Lakeside Long Term Static	1.532	- 1.5
Dallman Long Term Static	2.245	
Lakeside Short Term Static	1.640	- 1.4
Dallman Short Term Static	2.897	
Lakeside Seismic	1.26	- 1.0
Dallman Seismic	1.754	

7. STATEMENT

This Initial Safety Factor Assessment for Coal Combustion Residuals Surface Impoundments was completed for CWLP by Andrews Engineering, Inc. in accordance with the requirements under 40 CFR Part 257.73(e) and 257.73(f).

Paul M. Van Metre, P.E.

10-13-2016

Date
APPENDIX A

Site Map

	BΥ			
N O OOO 150 300 600 SCALE: IN FEET	REVISIONS DESCRIPTION			
	. DATE			
		3300 GINGER CREEK DRIVE SPRINGFIELD, ILLINOIS 62711-7233	PH (217) 787-2334 FAX (217) 787-9495 PONTIAC, IL • LOMBARD, IL • INDIANAPOLIS, IN • WARRENTON, MD	PRDFESSIONAL DESIGN ENGINEERING AND LAND SURVEYING FIRM #184-001541 APPROVED BY: PMV DESIGNED BY: PMV DFAMN BY: MPN
	CWLP COAL COMBUSTION RESIDUALS SURFACE IMPOUNDMENTS	PLANS PREPARED FOR	CITY, WATER, LIGHT & POWER	SPRINGFIELD, SANGAMON COUNTY, ILLINOIS
	DATE: 0		2016	
and the second of the second o	SHEET	150077, NUMBE	/0011 77:	
	F	IG.	2/	4

APPENDIX B

Lakeside Soils Logs and Cross Section

THE R	1	T	E	lec	ctro	oni	ic F	Ŧili	hg	F	Re	ce	îve	ed,	Cle	rk's	SC	Dffi	çe	08	3/2	7/	20	20	0	Г	T	T	Г	Г	Π	T
HANSON ENGINEERS PROJECT NAME AND LOCATION CINL #P TORY TOATA TOATA Soringfield Illingis	SAMPLE DESCRIPTION		ttom Ash	H 11	" " Idl. acouve f sonder silt	k arau wit condu silt	u vf.sandu siltu clau	u siltuf. sand. (Flu ash).	y ash.		brn & arow wf sandy silty clay low snote	colored we candu silturatur tre-condetara	Condity F condition to the	And Allo Anto Anto Anto Anto			araw of condu siltur clau / ax conte	professional ve condu site clau (to ov conto	"Edr. brn vf sundu situring (tr ny sante)	brn & arall v. F. sandu ciltu clau / v snats	arau clouttr silt & ox. spots)	arau vit sandu siltu claulox snats	brn Earan vf condu siltu clau (tr chard atc)	find a min of the first faith and a for the 3 in	1 11 11 11 11 11 11 11 11 11 11 11 11 1	· E · · · · · clause cit Jchand nte	~ E - ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	"E" = " - / chard ats	- E E brn. F-m. sand.	. ciray fm. sand.	ý sháley clay.	
ABOR DIL TES	ECIAL	-	B			10	Qr	Gr	FI	ì	10)	M	C	<u>``</u>	_	-	Bri	12	Gr	1d	Gri	Br	Ye/	3	1	2	2	3	\$	Bri	(Dru	1
N - 28	a SPE	-		-	-	-	-	-								+		-	-												_	+
	N X	-	_		ļ	-					-				_											4				_	_	
	0			_												6	_	-														
	3	37.4	0	10	3	61	33	67	46	19	26	2	27	3		120	- 14	17	29	25	27	28	27	28	28	26	23	24	23	14	29	
D T T	ESTS P	:5:				1	0.8	3.6			13	1.8 28	2.4	0.6		1= 1	4.57	2.4	22	2.4	5.0	2.4	2.6	2.5	2.8	1.1	0.6	0.7	0.8			
	M M	:lev					B				Sh	B	æ	B		E/c)	BSB	0	8	SSA	on	A	HSH	B	B	8	8	8	B			T
287	STREI	0					28.5				120	227	.86	250		0	189	127	86	268	.68	33	94	.27	.68	.16	54	89	1.78			T
2-1	z	fac	14	3	5	/	4 1	4	6	00	50	151	6	300	-	rfac	512	202	101	12 1	13 2	12.21	121	14 2	15 1	9 1	00	6 0	50	6	6	1
P 7e-	EV,	SUV	551	52.6	10	17.6	121	2.6	10	7.6	2.1	2.6	10	7.6		5111	30	05	00	5.5	30	50	0.0	55	3.0	0.5	00	22	0.0	5.5	5.2	+
Jun	E H	201	0:01	0°54	6 55	0.54	054	0.54	654	053	6 53	050	6 53	5.52	-	10L	6:155	0'55	54	54	0 54	0.54	53	0.53	0 53	53	52 52	052	52%	51	21	-
ж 	P. DEP	1001	2-4	15:4	17:0	10	12:	15:	17:	20	22.	125	27-	301		2001	21	5	7:1	101	12:4	15.0	2.27	201	22:4	251	27:6	30	356	401	140	-
ERATC TE 3 NO.	R. SAM	5	-	0)	07	4	5	0	2	30	0	110	11	12	-	GI	-	2	a	4	5	0	4	00	6	2	11	12	10	14	141	-
DA JOI	BO		1														2		1			1										

Finilte 3

Ĩ		rom)	lecti	ron	ic F	ilin	g: F	Charles Pi	eiv	ed, C	Clerk'	s C	Dffi	ce	08	8/2	7/2	02	0				T
PROJECT NAME AND LOCATION CIN L & P Ash, Pond Study Soundfield Illinnis	SAMPLE DESCRIPTION	and usilty claultr, chard ot s. 6.50	trichdrd pts (smroots)	anay sury ciay Ir. chard prs.	indysilty clay (tr chard ats.	dy silt y clay	dysilty clay vicenaray	f sandy silty clay Eclayey silt	in Silt/chard.pts.			indu silt	· · · · · · · · · · · · · · · · · · ·	. sandy silt (tr. c. sand.)	nem. silty fisand (tr fly as h.)	,	6 1 (c 1 - 1)	lus hit aug		dy silty clay.			
LABORATORY SOIL TEST DATA	SPECIAL TESTS	Brns & drk. brn. vf. S	Prk. gray clay	1 1 Edrk aran	STU Pray in T	Prk. gray kt. Sal	Drk, gray vr. san	Yel brn Egray V	11 11 3 11 11	Brn. gray clay.		Yel brn farau uf si	1 11 6 1 1 11 11	" " & " KF-m	min E, - clay/	Fly ash.	The second	fills hid wind	1 11 12 11	~ ~ v.f. san			
	Q.D								T						1	-	+	t	1		+		-
	J.w	11		1				1	1					-	1	+	1	1-			+		-
	3 4	2:0	25	62	52	200	12	200	210	26		0	25	23	727	20	110	08	62	2	$\frac{1}{1}$	+	
1 1 1	2 a V	5	54		10	00	12	Nr	10	9	0.0)0	8	N	N	2	1	-	17	11	m			-
	M TES	Sh 4	204	242	CAC	X-X	Sh3.	N-	1	m	- 56	42	3	Sh2	ShL.	+	+	-	+	N			
37	STRENG	S6B	S2B	24 B	52 8	AX AX	SOB BOS	14 Da 12	44	49 E	5/av	25.5	572	50	47 ID		-	+		58B			
-165		365	100	21.5	12	367	30	21/2	7 13	13	Ce V	330	112	1.6	110	0	+	-	-	5 2.4			
0 1	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	112.	22 1	1.2.1	110	1127	12	16	201	2 2	utto	1 12	2 1	125	214	101	10	2 2	2 1	2 16		+	
uma uma	ELE	55	54	545	542	537	533	52%	527	272	25	Sla	561.	55%	556	55	545	546	541	536			
11	DEPTH	2:6	2:0	10:01	12:4	17:6	20.02	25:0	27:6	30.02	unc	2:2	5:0	2:1	0.01	9.71	0:01	20.02	25:0	202			
RATOI E NO.	SAMP	5-6	200	V	50	30	200	210	21	12	Gra	-	2	3	41	0	36	00	0	2			
W H m	(c	1	6	1 1		1	1. 1		1173			1		1	1	1	6	1		1.0.1	1 1-	1 1	

Finire 4

1.0

Electronic Filing: Received, Clerk's Office 08/27/2929 AKWOOD AVE.

LOG OF BORING

DCATIC	DN PER PLAN	1.1.0.11			_				
ATUM_	HAMMER WT.	140#		HAMMER D	ROP	30	n	_ HOLE	DIA 6"
URFAC ATE ST	e elev cor arted <u>5-18-87</u> cor	RE DIA		5-18-8	37	c	CASING	G METH	od HSA
ELEV.	DESCRIPTION	STRATA	DEPTH	BLOWS FT.	SA NO.	TYPE	S RECOV.	OP	NOTES
		0.0	30						
	Blk. bot. ash. tr.			6-7-7	l	SS	14"		
	f. gravel fill moist-wet		5	3-2-1	2	SS	8		
14			1	3-2-3	3	SS	10		WATER 5-18-87
		9.2		2-1-0	4	SS	12		DD 5.0' 8:45am BAR 20.5' 10:15 AAR 4.6' 10:35a DWL 4.0' 6:35pm
	BIK. ILY ASN	1	-1-0			-			
	0.0			2-2-2	5	SS	15	0.8	
	wet		- 1-5	6-2-2	6	SS	14	0.9	
			2 2	4-4-5	7	SS	18		
			20	3-5-3	8	SS	18		

Electronic Filing: Received, Clerk's Office 08/27/2020 OAKWOOD AVE.

LOG OF BORING

CATIO	PER PLAN	-				_ co	NTRAC	CT NO.		
ATUM		140#	-			30	11		1.6	61
	E ELEV			HAMMER D	ROP			- HOI	E DIA	
ATE ST	ARTED 5-18-87 CORE	. DIA	5.	-18-87	-		CASIN	G	A.C.6.	HSA
AIL 31		LEIED_			-	-	DRILLI	NG ME	THOD	
ELEV.	DESCRIPTION	STRATA	DEPTH		S	AMPL	ES	1.16.2		NOTES
		DEPTH	SCALE	BLOWS FT.	NO.	TYPE	RECOV	.QP	1000	NOTES
		0.0	30				1.00	4.7		114-2-2-2
					10					
			-	3-2-3	.q	22	181	12		
		1.00		1 - 1		55	10	1.02	18.1	
		23.1	ŀ		1			1		
1.0	Green grav silty clay					2.	1.80		- 7	
	tr. f.m. sand, tr.		Γ	S	8		1.25	5.0	74	
	f. gravel	4.50	25	6-8-7	10	SS-	18	4.5-	1-17	
	moist	25.7	25			1000	17.0	14	1 6	
14	Dk grav silty		-		-	100	5			
98	clav <u> </u>								148	and the for the form
- 1				4-4-	11	SS	18	3.1		
							1	1.44		/ ·
	moist								6.1	
				1						1 I I I I I I I I I I I I I I I I I I I
		30.0	100	3-4-4	12	88	18	2.0	(1 - 1)	
			30	7 7 7	16	55	10			5 a .
					1				08	신간
							5		11	
	END OF. ROKING 30.0.	1		8.1						
		100	14							
			2 I							
			31	6. H						
		·	10							G ·
			. <u>_</u>							
			1-1							
	1									
	•	τ.								
			-							
						1 1				
	land and a second					1.3				
2		4.45 - 1		Sussenies		0.7				
						(† 14				
										1

Electronic Filing: Received, Clerk's Office 08/27/2020 ORILLING COMPANY

LOG OF BORING

	HAMMER WT,	140#		HAMMER D	ROP	3() "	HOLE C	ылб"
JRFAC	E ELEV CORE	E DIA		10 07			CASIN	IG	
ATE ST.	ARTED COMI	PLETED_		-18-87		-	DRILL	ING METHO	DD_HSA
ELEV.	DESCRIPTION	STRATA DEPTH	DEPTH	BLOWS FT.	S NO.	AMPL	ES	V. QP	NOTES
		0.0	30					h min	
	10" white rock, brn. gray silty clay fill moist	3.3	1 1 1	8÷10 11	1	SS	15"	4.5+	
	Light brn. silty clay fill moist	5.8	i ik	8-9-11	2	SS	16	3.0	
	Brn. green blk. silty clay fill moist			3-5-5	3	SS	15	2.1	WATER 5-18-87
			- 10	3-5-7	4	SS	16	2.4	DD 28.5' 12:0 BAR 18.5' 1:5 AAR WCI 15.0'
			1 1	3-6-7	5	SS	13	2.0	Dwl 14.0' 6:3
	÷		- 15	3-5-7	6	SS	18	1.7	
				5-6-9	7	SS	18	3.2	
				5-6-8	8	SS	18	3.2	

Electronic Filing: Received, Clerk's Office 08/27/2020OIS DRILLING COMPANY

LOG OF BORING

TUM.	E ELEV CORE	140#		HAMMER E	ROP	30"	CASIN	HOL	E DIA 6"
TE ST	rarted5-18-87 comp	LETED_	5-1	8-87		_	DRILLI	NG MET	HODHSA
ELEV.	DESCRIPTION	STRATA DEPTH	DEPTH	BLOWS FT.	S.	AMPL	RECOV	QP	NOTES
		0.0	30					165	
_		22.7	1	4-6-9	9	SS	18"	3.5	
	Brn. gray silty clay, tr. f. sand								
	moist	25.4	-25	3-3-6	10	SS	18	1.8	
	Brn. gray clayey silt, some f. sand, occas.		1						
	1-3" f. sand seams		-	3-4-4	11	SS	18	1.5	
	wet		1		_				
		- 4	-30	2-3-3	12	SS	18	0.5	
	3	51.5	-		i.				
	Brn. f.m. sand								
	wet				-				
			35	2-2-3	13	SS	18	1.2	
			-	11-11	_				
	Brn. f.m. sand wet 4	9.8	40	12	1.4	ss	18	2.5	
	END 'CF BORING 40.0'		10						

Electronic Filing: Received, Clerk's Office 08/27/2020 OIS DRILLING COMPANY

LOG OF BORING

1909 OAKWOOD AVE. BLOOMINGTON, ILLINOIS 61701 (309) 662-5968

CATIO	PLAN	[
	HAMMER WT.	140#		HAMMER C	ROP	30) 11	- HOLE	DIA6"
E ST	ARTED 5-18-87 COM	PLETED_	5-	18-87			DRILLI	NG METH	ODHSA
EV.	DESCRIPTION	STRATA DEPTH	DEPTH	BLOWS FT.	5/ NO.	AMPLI	ES RECOV.	QP	NOTES
		0.0	30					1-10	
	5" white rock, brn. gray blk. silty clay fill moist	4.5	1 1 1 1	7-6-12	1	SS	14"	4.5÷	
	Blk. silty clay fill moist		15	p-9-9		55	10	4.0+	
		8.3		5-5-6	3	SS	16	1.7	WATER 5-18-87 DD 24.0' 3:50 BAR 12 4' 4.0
	Brn. green blk. Silt clay fill moist	y	-10	3-4-8	4	SS	17	2.5	AAR 10.0' 4:2 DWL 9.5' 6:45
		17.9		3-6-7	5	SS	18	2.2	
1	Blk. gray silty clay fill moist		15	3-6-8	6	SS	18	2.4	
				5-6-7	7	SS	18	2.3	
			- 20	3-4-8	8	SS	18	3.0	

Electronic Filing: Received, Clerk's Office 08/27/2020 AKWOOD AVE.

LOG OF BORING

CONTRACTED WITH	HANSON I	ENGINE	ERS		BORING N	ю. B-	3
PROJECT NAME	CWLP ASH PC	DND			CONTRAC	TNO	
LOCATION	PI	ER PLA	N		- continue		
DATUM	HAMMER	R WT	140#	HAMMER DROP_	30"	HOLE DIA.	6"
SURFACE ELEV.		_ CORE	DIA.		CASING	3	
DATE STARTED	5-18-87	COMPL	ETED	5-18-87	DRILLI	NG METHOD	HSA

ELEV.	DESCRIPTION	STRATA	DEPTH		S	AMPL	ES		NOTES
		DEPTH	SCALE	BLOWS FT.	NO.	TYPE	RECOV	OP	ROLS
		0.0	30	1.000	101			12.21	147 Carron Contra
		1000	100			65			
			- I.	1			in the second	1.1	6
				5-6-9	g	22	18"	20	
				, . ,	-	~~	10	2.0	
			4						
	Pro mor giltr olor		1						6.12
	bin, gray silly clay		-		1.0		100.11		
			1.	3-1-5	10		10	20	
	modet unt		25	5-4-5	10	22	10	2.0	
	morst-wet					1.1			
		1	L						
				774	44		10	1.1	
		1	1	5-5-4	11	55	10	1.0	
		28.2							
	and a second								
	Gray brn. clay. littl	e			-				
	silt	50.0		Sec. 34	1.2				
	moist	p0.0	-	6-9-12	12	SS	18	3.8	
		-5							

Electronic Filing: Received, Clerk's Office 08/27/2020IOIS DRILLING COMPANY

LOG OF BORING

1909 OAKWOOD AVE. BLOOMINGTON, ILLINOIS 61701 (309) 662-5968

ROJEC	T NAME CWLP ASH FONL)				_ co	NTRAC	T NO	
OCATIO	DN PER FLAN	140#	_		-	7	0.11		
DATUM.	HAMMER WT.	140#		HAMMER D	ROP	2	0"	_ HOLE	DIA6"
URFAC	E ELEV COR	E DIA.	5-	18-87			CASING	i	UCA
ATE ST	COM	PLETED_	-	10 01		(DRILLIN	NG METHO	DDDA
ELEV.	DESCRIPTION	STRATA	DEPTH		SA	AMPLE	s	- 6°	NOTES
1.1.2		DEPTH	SCALE	BLOWS FT.	NO.	TYPE	RECOV.	QP	NOTES
		0.0	30						
	Brn. silty clay	1. 1	-	1			14		-
		1.0		3-3-2	2	gg	10"	3 5	
			T	112	-	55	10	1.1	
			-			11		111	
	fill moist	4.0		1	1		(è 4)		
	Ern. grav blk. siltv	1.1		4-5-6	2	SS	12	3.2	
	clay								
			1					ł.	
	fill moist		Ť.						
			~	3-3-4	3	SS	10	2.5	
					-				WATER 5-18-87
			-		.13	1.1			DD 11.0' 5:151
				b = c + b					BAR 22.0' 6:00
				3-5-5	4	SS	13	2.5	AAR 9.8' 6:301
		10.5	10						DWT. 9.51 6:501
	Blk. bot ash		L	1. I	_				
						1	2.1		
			-	5-4-4	5	SS	18		
	fill wet			0.0.13					
			-						
			÷	5-1-3	6		16		
		15.2		547	0	60	10		
		2.2	15						
		- 4	-	-					
1.9	Blk. Ily ash			1-1-0	7	22	18	0 2	
1.1			-	1 1 0	1	60	10	0.2	
	fill wet		-				144	100	
			1.1		-				
			-	0-0-2	8	SS	.8	0.2	
	B		1						
			20						

Electronic Filing: Received, Clerk's Office 08/27/2020OIS DRILLING COMPANY

LOG OF BORING

ROJEC	T NAME CWLP ASH FOND				_	_ co	NTRA	CT NO.	_		
CATIC	DN FER PLAN	410.0			_						
ATUM_	HAMMER WT.	140#	<u> </u>	HAMMER D	ROP	30)"	_ но	LE DIA	6"	
URFAC	E ELEV COI	RE DIA.			225		CASIN	G			
ATE ST	ARTED 5-18-87 COI	MPLETED_	5-	18-87			DRILL	ING ME	THOD	HSA	
	1	-	-			_		A. 0. 0. 0.	11000		
ELEV.	DESCRIPTION	STRATA	DEPTH	0.000	5/	AMPLI	ES	1		NOTES	
-	1	DEPTH	SCALE	BLOWS FT.	NQ.	TYPE	RECOV	· QP			_
-		0.0	30	-			1.2				
		· · · · · ·	1.11		2				1.	2	
		1.1	-								
		24	11.1					1.1			
			-						15 13	8	
			1.71		-					6	
			-							1	
		05 5		1-0-1	3	SE	15"	10.5			
		47.7	40						1		
	Elk. gray clay, tr.		-				171) a 1				
	silt							1			
			T								
	moist			1 2 4							
	ITTO TO U		Γ								
		1.1.1	-	1.1	8.1		100	2.0			
4.4		30.0	6111	4-6-10	10	SS	18	3.3			
			30				6	1.			
			50								
	END OF BORING 30 OF	le i i									
	DUD OF BORING JO.O.										
						18					
						1.1					
				(
									1.1		

				-		
	à	à				
	S	NUIL				
	NOISING	DESCR				
	R					
	17.1	AIE				
	ç	2				_
570.0	יו	<u>ا</u>	Щ	195 195	P I	
	2	' <u>∠</u>	DRIV	787-94	RENTON,	
	Ĺ		REK	(217)	• WARI	<u>'A WN</u> B
- 500.0	ß	- E E E E E			POLIS, IN	
560.0	2	ΪŻ			INDIANAI	ULANU 3 81% PMV
	Z			217)7	o, IL +	COVED 4
	4	ч Ц	0 0 0 0	5 8	MBAR	DES
550.0						VEBIUN Y: PMV
					FIAC, I	NED B
			Ť			APPRO
- 540.0						
		7		Ω L		JIS
	Ċ			MOO		ILLING
	L L		FOR	ں م	3	JNIY,
└── 530.0		2020	ARED	н Ц		วี ว่า Z
			PREP	-		NGAMC
		A DH	LANS	С Ц Ц		J, SAN
		SILE	۵.	< / //		GFIELL
		LANI		> L L		SPRIN
					-	
20						
	DA	1 <i>TE:</i>				
	PF	OU POJEC	T IDE	к 20	J16	
	Sŀ	IEET	NUME	, , 00 PER:		
		X	-S	E	C.	
		,		_		

APPENDIX C

Fly Ash Technical Papers

Engineering Characteristics of Coal Combustion Residuals and a Reconstitution Technique for Triaxial Samples

Nicholas A. Lacour

Thesis submitted to the faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of

> Master of Science In Civil Engineering

Adrián Rodriguez-Marek, Chair Joseph Dove James Martin

19 June, 2012 Blacksburg, Virginia

Keywords: coal combustion residuals, fly ash, bottom ash, surface impoundments

Copyright 2012, Nicholas A. Lacour

Engineering Characteristics of Coal Combustion Residuals and a Reconstitution Technique for Triaxial Samples

Nicholas Alexander Lacour

ABSTRACT

Traditionally, coal combustion residuals (CCRs) were disposed of with little engineering consideration. Initially, common practice was to use a wet-scrubbing system to cut down on emissions of fly ash from the combustion facilities, where the ash materials were sluiced to the disposal facility and allowed to sediment out, forming deep deposits of meta-stable ash. As the life of the disposal facility progressed, new phases of the impoundment were constructed, often using the upstream method. One such facility experienced a massive slope stability failure on December 22, 2008 in Kingston, Tennessee, releasing millions of cubic yards of impounded ash material into the Watts Bar reservoir and damaging surrounding property. This failure led to the call for new federal regulations on CCR disposal areas and led coal burning facilities to seek out geotechnical consultants to review and help in the future design of their disposal facilities. CCRs are not a natural soil, nor a material that many geotechnical engineers deal with on a regular basis, so this thesis focuses on compiling engineering characteristics of CCRs determined by different researchers, while also reviewing current engineering practice when dealing with CCR disposal facilities. Since the majority of coal-burning facilities used the sluicing method to dispose of CCRs at one point, many times it is desirable to construct new "dry-disposal" phases above the retired ash impoundments; since in-situ sampling of CCRs is difficult and likely produces highly disturbed samples, a sample reconstitution technique is also presented for use in triaxial testing of surface impounded CCRs.

Acknowledgments

I would like to thank Dr. Adrián Rodriguez-Marek, my advisor, for his guidance throughout my thesis work and throughout my academic career at Virginia Tech. I would also like to thank my parents for their encouragement and support throughout my entire academic career. Lastly, I would like to thank my grandmother for passing on my great-grandparents' rock collection that first sparked my interest in geology and undoubtedly led to my interest in geotechnical engineering.

Contents

1. Intr	oduction and Background1
1.1	Introduction1
1.2	Kingston Fossil Plant Failure
1.3	Outline
2. Eng	ineering Characterization of CCRs8
2.1	Specific Gravity9
2.2	Consolidation Properties and Volume Stability11
2.3	Hydraulic Conductivity
2.4	Shear Strength
2.5	Compaction Characteristics
3. Dyn	amic Properties of CCRs 40
3.1	Cyclic Shear Strength Properties of CCRs
4. CCF	R Failure Modes and Monitoring Practices45
4.1	Surface Impoundments
4.2	CCR Landfills
4.3	Failure Modes
5. Slop	e Stability of CCRs
5.1	Limit Equilibrium and Finite Element Analyses
6. Settl	ement Calculations for CCRs 59
6.1	Test Fill Results
6.2	Settlement Calculation by Consolidation Theory
6.3	Settlement Calculation by D'Appolonia Method

6.4	Other Observations	63
7. Reco	nstitution Technique for Surface Impounded CCRs	65
7.1	Moist Tamping	65
7.2	Air/Water Pluviation	66
7.3	Slurry Deposition Techniques	67
7.4	Slurry Deposition Technique Applied to SI CCRs	67
7.5	Analysis of Slurry Deposition Technique with SI CCRs	75
8. Conc	lusions	86
8.1	Engineering Characterization of CCRs	86
8.2	Dynamic Properties of CCRs	86
8.3	CCR Failure Modes and Monitoring Practices	87
8.4	Slope Stability of CCRs	87
8.5	Settlement Calculations for CCRs	88
8.6	Slurry Deposition Technique Applied to SI CCRs	88
8.7	Recommendations for Further Study	89
Referen	ICes	90
Append	lix A	96
Samp	le Preparation and Fabric Analysis Spreadsheets	96

List of Figures

Figure 1: Aerial photographs comparing the Kingston Fossil Plant ash disposal area before and
after the massive slope failure on December 22, 2008
Figure 2: Variability plot for the specific gravities determined by studies performed in different countries
Figure 3: Variability plot for the compression indices of studies done on fly ashes and surface impounded ashes
Figure 4: Variability plot of the compression indices for studies done on bottom ashes
Figure 5: Variability plot of the recompression indices for studies done on fly ashes, bottom ashes, and surface impounded ashes
Figure 6: Variability plot for the coefficient of consolidation of studies done on fly ash, bottom ash, and surface impounded ash
Figure 7 : Variability plot of the hydraulic conductivity of fly ashes from different countries, as determined by different researchers
Figure 8 : Variability plot of the hydraulic conductivity of surface impounded ashes and bottom ashes from different countries, as determined by different researchers
Figure 9: Micrographs of bottom ash particles magnified 112 and 373 times (Jakka et al. 2010)
Figure 10: Micrographs of fly ash magnified 100 and 2,000 times (courtesy of Kevin Foster). 27
Figure 11: Variability plot of effective stress friction angle of various CCRs as determined by different researchers using the direct shear test
Figure 12 : Variability plot of the effective stress friction angle of various CCRs as determined by different researchers using the consolidated drained triaxial test

Figure 13: Variability plot of the effective stress friction angle of various CCRs as determined
by different researchers using the consolidated undrained triaxial test
Figure 14: Variability plot of the effective stress friction angle of fly ashes for all shear strength
tests performed by various researchers
Figure 15: Variability plot of the effective stress friction angle of surface impounded ashes for
all shear strength tests performed by various researchers
Figure 16: Variability plot of the effective stress friction angle of bottom ashes for all shear
strength tests performed by various researchers
Figure 17: Variability plot of the total stress friction angle of all CCRs as determined by
consolidated undrained triaxial tests performed by various researchers
Figure 18: Compaction curves for different Indian fly ashes compared to those for several
natural soils (Sridharan et al. 2001)
Figure 19: Plot of excess pore pressure ratio versus number of loading cycles for compacted
Indian surface impoundment ash at different cyclic stress ratios and 1 Hz loading frequency
(Mohanty et al. 2010)
Figure 20: Plot of excess pore pressure ratio versus number of loading cycles for compacted
Indian surface impoundment ash at a cyclic stress ratio of 0.10 and confining pressure of
2214 psf and 0.1 Hz loading frequency (Jakka et al. 2010)
Figure 21: Plot of CSR versus number of loading cycles to liquefaction for different surface
impounded CCRs tested by different researchers at confining stresses close to 50 kPa. Jakka
et al. loaded specimens at 0.1 Hz to 1 Hz and Dey and Gandhi loaded specimens at 1 Hz.
For comparison, curves for sands tested at the same confining pressure are superimposed
(Mulilis et al 1976) 42
Figure 22 : Plot of CSR versus number of loading cycles to liquefaction for surface impounded

Figure 22: Plot of CSR versus number of loading cycles to liquefaction for surface impounded CCRs tested by Jakka et al (2010) at a confining pressure of 100 kPa. For comparison,

 Figure 23: Plot of CSR versus number of loading cycles to liquefaction for different surface impounded CCRs tested by different researchers at 200 kPa confining stress. Jakka et al. loaded specimens at 0.1 Hz to 1 Hz and Mohanty et al. loaded specimens at 1 Hz	curves for C778 sand at the same confining pressure are superimposed (Carraro et al 2003).
 Figure 24: Example of how to determine the energy dissipated by a soil throughout a single loading cycle (Yoshimoto et al. 2006)	Figure 23 : Plot of CSR versus number of loading cycles to liquefaction for different surface impounded CCRs tested by different researchers at 200 kPa confining stress. Jakka et al. loaded specimens at 0.1 Hz to 1 Hz and Mohanty et al. loaded specimens at 1 Hz
 Figure 25: Flow chart illustrating risk management utilizing the observational method (after Davies and Martin 2000)	Figure 24: Example of how to determine the energy dissipated by a soil throughout a single loading cycle (Yoshimoto et al. 2006)
 Figure 26: Comparison of failure modes of upstream mine tailings dams as compared to other types of mine tailings dams (modified from Davies and Martin 2000)	Figure 25: Flow chart illustrating risk management utilizing the observational method (after Davies and Martin 2000)
 Figure 27: Sample surveillance plan schedule for a mine tailings impoundment (after Davies and Martin 2000)	Figure 26: Comparison of failure modes of upstream mine tailings dams as compared to other types of mine tailings dams (modified from Davies and Martin 2000)
 Figure 28: Subsurface profile of a slope stability example for an SI CCR embankment	Figure 27: Sample surveillance plan schedule for a mine tailings impoundment (after Davies and Martin 2000)
 Figure 29: Analyses for the in-situ condition, first with the in-situ measured water table (above) and then with a hypothetical higher water table (below). Slip surfaces are shown for factors of safety below 1.7 for the above case and between 1.0 and 1.2 for the below case	Figure 28: Subsurface profile of a slope stability example for an SI CCR embankment
 Figure 30: Analyses for an added upstream dry-disposed cell over the surface impoundment, for the in-situ water table (above) and for a hypothetical higher groundwater table (below). Slip surfaces with factors of safety between 1.5 and 1.6 are shown in the above case and between 1.2 and 1.3 for the below case	Figure 29 : Analyses for the in-situ condition, first with the in-situ measured water table (above) and then with a hypothetical higher water table (below). Slip surfaces are shown for factors of safety below 1.7 for the above case and between 1.0 and 1.2 for the below case
Figure 31 : Analyses for an added upstream dry-disposed cell above the surface-impoundment for the in-situ groundwater table (above) and for a hypothetical higher groundwater table (below). Slip surfaces with factors of safety between 1.5 and 1.7 are shown for the above	Figure 30 : Analyses for an added upstream dry-disposed cell over the surface impoundment, for the in-situ water table (above) and for a hypothetical higher groundwater table (below). Slip surfaces with factors of safety between 1.5 and 1.6 are shown in the above case and between 1.2 and 1.3 for the below case
case and between 1.2 and 1.4 for the below case	Figure 31 : Analyses for an added upstream dry-disposed cell above the surface-impoundment for the in-situ groundwater table (above) and for a hypothetical higher groundwater table (below). Slip surfaces with factors of safety between 1.5 and 1.7 are shown for the above case and between 1.2 and 1.4 for the below case

Figure 32 : Plots published by D'Appolonia et al. (1970) to determine the values of the geometry factors to be used in footing settlement analyses
Figure 33: Acrylic mixing tube with a rubber stopper on one end and rubber gasket seal glued to the opposite end
Figure 34: Thin metal disk approximately the same diameter of the bottom porous disk
Figure 35 : Water bath large enough to completely submerge the mixing tube and allow for easy placement of the porous disk and metal plate. The rubber membrane can also be seen rolled down around the mixing tube
Figure 36 : Water bath large enough to accommodate the bottom of the triaxial cell and submerge the bottom platen
Figure 37 : A custom-made split-collar to accommodate the additional volume of soil when the slurry is first placed in the specimen split-mold. This collar was machined out of nylon to fit the dimensions of the split-mold being used and the flexible collar used to accommodate the extra water volume when the slurry was placed
Figure 38 : Placement of the porous disk and transferring of the fines lost in the water bath to a container to be oven-dried and weighed
Figure 39 : Securing of the porous disk with the thin rubber membrane and placement of the thin metal disk over the opening in the membrane
Figure 40 : Rolling up the membrane around the mixing tube and placement of the specimen split-mold, the slurry extension collar, and the water extension collar after removal of the triaxial cell base from the water bath
Figure 41 : Setup used to densify SI CCR slurry-deposition samples. Notice that the short-circuit between the top and bottom drainage is being used to drain the sample as it is densified with the top platen applied. The top platen fits snugly enough into the extension collar to keep a water-proof seal. The white piece on the top of the triaxial base is simply a part to keep the

piston plumb as the slight pressure is applied to the top of the sample during densification.
·····
Figure 42: Ice bath placed around the compacted specimen for a period of four hours to set the
gelatin
Figure 43: Specimen removed from the split mold and membrane following gelatin curing
period
Figure 44: Each specimen slice volume was determined using water displacement. A 500 mL
capacity beaker and a ruler incremented at 1/100" were used to do this. The vertical distance
between a 100 mL addition of water to the beaker and the equation for the volume of a
cylinder was used to calculate the diameter of the beaker; with the diameter known, it was
determined that volumes could be measured accurately to ± 1.4 cm ³
Figure 45: Plot comparing grain-size distributions across the height of specimen one
Figure 46: Plot comparing grain-size distribution across the height of specimen two
Figure 47: Plot comparing grain-size distribution across the height of specimen three
Figure 48: Plot comparing grain-size distributions of the top slices of all three specimens 83
Figure 49: Plot comparing grain-size distribution of the middle slices of all three specimens 84
Figure 50: Plot comparing grain-size distribution for the bottom slices of all three specimens 84
Figure 51: Comparison of all gradations for all three samples

List of Tables

Table 1 : Reported specific gravities of CCRs from different countries
Table 2 : Percentages by weight of major oxide constituents of CCRs from different countries (after Yudbhir and Honjo 1991)
Table 3 : Compression and recompression indices and coefficients of consolidation for CCRs reported by different researchers
Table 4 : Classification of Soils based on FSR (adapted from Sridharan and Prakash 2000) 19
Table 5 : Values of hydraulic conductivity for different CCRs for different countries asdetermined by different researchers (adapted from Prakash Sridharan 2009)
Table 6: Shear strength parameters determined by different researchers using the direct shear test. 28
Table 7 : Shear strength parameters determined by different researchers using the consolidated drained triaxial test. 29
Table 8 : Shear strength parameters determined by different researchers using the consolidated undrained triaxial test. 29
Table 9 : Summary of shear strength and hydraulic parameters used in CCR surface impoundment slope stability example. 53
Table 10 : Consolidation settlements calculated for test fill placed over a CCR surface impoundment. 60
Table 11 : Specimen relative density and density summary. The bottom two rows summarize relative density and density data for the entire specimen. 80

Chapter 1

Introduction and Background

Ever since the promulgation of the Resource Conservation and Recovery Act in 1976, there has been debate on the proper waste classification of coal combustion by-products. They have traditionally been disposed of in a fashion similar to that of mine tailings wastes. However, the failure of the Kingston Fossil Plant's main disposal cell on December 22, 2008 has once again led to discussions on how to properly regulate the disposal of these materials. From an engineering standpoint, geotechnical engineers have very little experience with coal combustion wastes, which have some unique engineering properties that set them apart from naturally occurring soils. A comprehensive literature review and compilation of engineering properties of coal combustion residual materials is consolidated and compared between researchers from different nations. Additionally, a triaxial sample reconstitution technique is proposed for surface impounded coal combustion residuals (different types of coal combustion residuals are addressed in section 1.1) which minimizes particle segregation and ensures constant density across the height of the sample. This chapter presents an introduction to the thesis and presents a brief summary of the December 22, 2008 slope stability failure at the Tennessee Valley Authority's (TVA's) Kingston power plant, which served as an inspiration for this thesis.

1.1 Introduction

Coal is the most commonly used fuel in generating electrical energy in the United States. In 2009, coal-powered steam turbines produced 45% of the almost 4 trillion kilowatt-hours of

large quantities of coal, there is naturally also a large amount of ash and other byproducts. The four main types of byproducts of burnt coal as described by the Environmental Protection Agency (EPA 2011) are:

- *Fly Ash*: mostly spherical silt to clay-sized particles composed mostly of silica removed from plant exhaust gases through the use of electrostatic precipitators or bag-houses with secondary scrubber systems.
- *Bottom Ash*: coarse, porous, angular fine sand to fine gravel-sized particles of agglomerated ash formed in pulverized ash furnaces.
- *Boiler Slag*: molten bottom ash collected at the base of slag tap and cyclone type furnaces that is quenched with water, causing it to fracture, crystallize, and form pellets. It is composed of hard, black, angular particles that have a smooth, glassy appearance.
- Flue Gas Desulfurization (FGD) Material: product of a process used for reducing SO₂ emissions from the gas system of a coal-fired boiler. Depending on the scrubbing process, the material is either predominantly calcium sulfite (CaSO₃), calcium sulfate (CaSO₄), or a mixture of the two. It consists of small, fine, particles. Calcium Sulfate FGD material can be used in place of gypsum (CaSO₄·2H₂O) in wallboard manufacturing or in cement production, while calcium sulfite can be used as embankment and road base material.

There are beneficial reuses for each of these byproducts, though generation almost always outweighs demand. In order to avoid confusion, when referring to these byproducts, the definitions outlined by EPA (*Federal Register* 2010) will be used. When referring to burnt-coal byproducts being beneficially used, the term Coal Combustion Products (CCPs) will be used, while Coal Combustion Residuals (CCRs) will be used when referring to byproducts that are destined for disposal.
Depending on the type of system used to remove fly ash from and/or to desulfurize the exhaust gases of boilers used in electricity generation, CCRs have traditionally been disposed of using either a dry (or, more accurately, a moisture conditioned) placement method or a hydraulic sluicing method . Again referring to EPA definitions (*Federal Register* 2010), any disposal area where CCRs are disposed of using a dry method will be referred to as a CCR landfill, while any area that CCRs are disposed of hydraulically will be referred to as a CCR surface impoundment. A CCR surface impoundment is a disposal area much akin to a mine tailings dam disposal area, or to a dredge spoil area. While CCR landfill wastes are placed using backhoes or other heavy equipment and compacted in a moist condition, CCR surface impoundment wastes are simply the result of a wet-scrubbing removal system for fly ashes; the effluent from these wet-scrubbing processes is then often mixed with bottom ashes and hydraulically placed in a disposal area contained by some sort of dike system.

As a result of the Kingston Fossil Plant failure, EPA found it necessary to reexamine regulatory policies regarding the disposal of CCRs:

With the promulgation of 42 U.S.C. §6901 (1976), commonly known as the Resource Conservation and Recovery Act (RCRA), CCRs were not initially specified as hazardous (subtitle C) or solid wastes (subtitle D). In 1980, the Solid Waste Disposal Act amendments to RCRA were enacted, one of which was the "Bevill Amendment", 42 U.S.C. §6921 (b)(3)(A)(i). This amendment temporarily exempted CCRs from subtitle C regulation, classifying them as subtitle D, which is subject to state regulation. In 1988, EPA released a report entitled *Wastes from the Combustion of Coal by Electric Utility Power Plants* in which they concluded that the four above-mentioned CCRs did not exhibit hazardous characteristics according to RCRA regulations and would therefore not be regulated under Subtitle C. However, it was not until August 9, 1993 that EPA issued the final regulatory determination applicable to these CCRs (*Federal Register* 1993), stating that regulation of them as hazardous wastes was unwarranted (Dockter and Jagiella 2005).

Most recently, on June 21, 2010, EPA announced their intent to regulate CCRs generated from the combustion of coal at electric utilities under the RCRA. The EPA announcement introduced two options:

- EPA would reverse the 1993 and 2000 exemptions of CCRs under the Bevill Amendment and list them as special wastes subject to regulation under subtitle C of RCRA when they are destined for disposal in landfills or surface impoundments.
- EPA would leave the Bevill determination in place while regulating the disposal of CCRs under subtitle D of RCRA by issuing national minimum criteria.

Regardless of the chosen alternative, EPA is also proposing to establish dam safety requirements in order to address the stability of CCR surface impoundments to prevent catastrophic releases like that at the TVA Kingston plant. EPA has suggested the adoption of the Hazard Potential Classification System for Dams, developed by the U.S. Army Corps of Engineers, since it would be relatively straightforward in its application to surface impoundments.

The main purpose of this thesis is to consolidate current published material on the properties of CCRs and to quantify the variability within the engineering properties of CCRs between countries, individual power plants, and CCR types. Furthermore, CCR impoundment areas are plentiful across the U.S. and power generating companies would prefer to begin dry disposal of CCRs directly over retired CCR surface impoundments. In order to do this, a geotechnical site investigation must be performed, in which the static and dynamic shear strengths of the surface impounded materials are analyzed. Since CCRs tend to be non-plastic in nature, undisturbed sampling is often difficult, time consuming, costly, and anything but "undisturbed." Therefore, a second objective of this thesis is to analyze a slurry deposition specimen reconstitution technique that is easier and less costly than undisturbed sampling, in order to determine if this specimen reconstitution technique forms samples of uniform relative density without particle segregation.

1.2 Kingston Fossil Plant Failure

The Kingston Fossil Plant is a coal-fired electrical power plant constructed and operated by the Tennessee Valley Authority (TVA). Construction on the facility began in 1951 and the first coal-fired electrical unit began in 1954. Ash slurries were initially released into a slack water area created by a two dikes with a gap in-between to allow water from the Watts Bar Reservoir to enter. The ash slurries and the waters of the reservoir were then allowed to commingle until the two dikes were connected in 1958, separating the reservoir and the ash disposal area. This slack water area collected silt and clay sediments from the period of 1942 to 1954; after 1954, disposed ash was added to the silts and clays being deposited and with the construction of the closure dike, additional clay runoff sediment was deposited along with the runoff silts, reservoir clays, and disposed ash. This formed a slick, weak layer found by AECOM to be a major contribution to the ash disposal area's failure in December of 2008 (Walter and Butler 2009).

The AECOM Root Cause Analysis report attributed the failure as most likely due to creep in the aforementioned weak layer due to active loading in a dredge cell contained within the disposal area. This creep caused an initial failure of various disposal phase dikes founded on older disposed ash deposits, which, in turn, caused progressive failure of upstream ashes, leading to undrained loading and subsequent failure of the downstream ash material and disposal area perimeter dike. The upstream progressive failure stopped upon reaching a former divider dike within the disposal area. The estimated ash released in the failure was 5.4 million cubic yards. Figure 1 provides an aerial photograph of the disposal area before and after the slope failure.

Figure 1: Aerial photographs comparing the Kingston Fossil Plant ash disposal area before and after the massive slope failure on December 22, 2008.

While this failure may have occurred because of a very unique site condition, AECOM did note in their Root Cause Analysis report that "extensive void ratio data in un-failed areas of the Dredge Cells showed a lack of significant consolidation of the wet ash with depth," which would indicate that strength would not increase significantly with depth in the disposed ash material. This property also raises the question of stability of these sort of disposal areas under dynamic loading. If surface-impounded coal ashes do not tend to increase in density with depth, this could leave a very deep, potentially liquefiable layer of CCRs at a given site, rather than just a single liquefaction-prone layer (which is usually the case in naturally-deposited soils).

The entire Root Cause Analysis report and other investigatory data for the Kingston Fossil Plant failure can be accessed on the TVA website at <u>http://www.tva.gov/kingston/rca/</u>.

1.3 Outline

This thesis is composed of eight chapters. The first chapter introduces the background as well as inspiration for the thesis topic. Chapters two and three provide consolidated research results on the static and dynamic engineering properties of CCRs, respectively. Chapter four discusses

Electronic Filing: Received, Clerk's Office 08/27/2020Nicholas A. LacourIntroduction and Background

similarities between mine tailings disposal areas and CCR disposal areas and provides some guidance on how monitoring techniques developed for mine tailings disposal areas can be directly applied or slightly modified so that they can be applied to CCR disposal areas. Chapters five and six address how slope stability and settlement analyses can differ for CCR materials as opposed to naturally occurring soils. Chapter seven provides a review of common triaxial reconstitution techniques used on granular materials, while also analyzing a reconstitution technique to determine if it produces homogenous samples in terms of grain size distribution and relative density with height. Finally, chapter eight provides some final observations for each chapter, as well as a summary of topics that require further research in the future.

Chapter 2

Engineering Characterization of CCRs

Index and mechanical properties of soils provide the basic information required to design earth retaining structures, foundations, and earthen embankments and to perform slope stability analyses; determining the index properties and running field and laboratory tests to determine these properties is the first step in any geotechnical engineering application. In any given region, there is a large body of literature from past projects describing the local soils that engineers can use as a resource to accelerate this initial process. CCRs, however, are not a natural soil and have characteristics that make their behavior in certain situations markedly different than natural soils of similar grain size; additionally, coal ashes can vary considerably from one site to another based on differences in the coal source, coal preparation methods, type of power plant unit, and combustion temperatures (Yudbhir and Honjo 1991). This chapter outlines some of the major differences in the properties of CCRs as compared to other soils and compiles some CCR characteristics obtained from published technical literature. Additionally, test data from engineering reports for five specific coal combustion plants in the U.S. are included; however, information identifying the specific plants has been omitted at the request of the plant operators. These five plants are referred to as Site 1 through Site 5 consistently throughout this thesis.

2.1 Specific Gravity

Perhaps one of the most unusual characteristics of CCRs is their wide range of specific gravities. While some CCRs may have specific gravities of around 2.7 or even 2.8, some have been reported to have specific gravities as low as 1.47. Table 1 provides some values of specific gravity (G_s) determined for CCRs by researchers in different countries.

Reference	Type of CCR	Country	Gs
Martin et al. (1990)	Fly Ash	USA	2.03-2.49
Tu et al. (2007)		USA	2.10-2.40
Kim and Prezzi (2008)		USA	2.30-2.81
Site 3		USA	2.42-2.71
Site 4		USA	2.21-2.73
Sridharan et al. (1998)		India	1.95-2.31
Pandian and Balasubramonian (1999)		India	1.97-2.55
Prashanth et al. (1999)		India	2.03-2.67
Sridharan et al. (2001)		India	2.07-2.55
Trivedi and Sud (2004)		India	1.72-2.03
Pandian (2004)		India	1.95-2.55
Das and Yudhbir (2005)		India	2.14-2.62
Prakash and Sridharan (2006)		India	1.95-2.55
Prakash and Sridharan (2009)		India	1.66-2.55
Jakka et al. (2010)		India	2.18-2.27
Raymond (1961)		UK	2.05-2.26
Sherwood (1975)		UK	1.90-2.37
Indraratna and Nutalaya (1991)		Canada	1.90-2.90
		Thailand	2.27-2.45
Kolay and Kismoor (2009)		Malaysia	2.11-2.31
Muhardi et al. (2010)		Malaysia	2.50-2.70
Site 1	Surface Imp.	USA	2.13-2.30
Site 2		USA	2.16-2.26
Site 3		USA	2.55-2.62
Site 4		USA	2.20-2.47
Site 5		USA	2.29-2.61

Table 1: Reported specific gravities of CCRs from different countries

Reference	Type of CCR	Country	Gs
Sridharan et al. (1998)		India	1.91-2.15
Sridharan et al. (2001)		India	1.96-2.66
Trivedi and Sud (2002)		India	1.60-2.10
Trivedi and Sud (2004)		India	1.98-2.00
Pandian (2004)		India	1.91-2.50
Prakash and Sridharan (2006)		India	1.91-2.50
Bera et al. (2007)		India	2.16-2.23
Prakash and Sridharan (2009)		India	1.64-2.66
Skarzynska et al. (1989)		UK	2.10-2.24
		Poland	1.90-2.31
Seals et al. (1972)	Bottom Ash	USA	2.28-2.78
Sridharan et al. (1998)		India	1.82-2.15
Sridharan et al. (2001)		India	1.98-2.19
Pandian (2004)		India	1.82-2.15
Prakash and Sridharan (2006)		India	1.66-2.17
Prakash and Sridharan (2009)		India	1.47-2.19
Jakka et al. (2010)		India	2.50-2.59
Kolay and Kismoor (2009)		Malaysia	2.09-2.32

Engineering Characterization of CCRs Nicholas A. Lacour

Despite the wide range of specific gravities observed for CCRs, most researchers recognize that they usually have a specific gravity lower than that of natural soils (Prakash and Sridharan 2009, Trivedi and Singh 2004b, Tu et al. 2007). It logically follows that since the unit weight of CCRs is less than that of natural soils, horizontal earth pressures in CCRs will be less than that of natural soils as well. Prakash and Sridharan (2009) cite this as a property that makes them ideal for use as backfill material for retaining structures or as a lightweight fill in other construction applications.

Many factors contribute to variability in the specific gravity of coal ashes, such as the parent coal and the combustion and cooling processes. Figure 1 compares variability of the specific gravity of different coal ashes from different countries. Additionally, some of the research studies done on ash from several different plants have a much higher variability than studies done on specific sites, indicating that variability in the specific gravity of CCRs within a given plant is lower than the specific gravity of CCRs within the country where that plant is in. Examining Figure 2, it is interesting to note the clear difference in the mean values of specific gravity between US coal ashes and Indian coal ashes; this may be due to higher iron contents in US coals. Table 2 provides percentages of major constituent oxides in CCRs from different countries by weight, which shows how much the mineralogy of CCRs can vary between countries, another factor that can account for high variability in the specific gravity of CCRs from different countries (Yudbhir and Honjo 1991). Loss on ignition (LOI) for the CCRs is also reported in Table 2, that is, the loss in mass of the samples upon strong heating.

Table 2: Percentages by weight of major oxide constituents of CCRs from different countries (after Yudbhir and Honjo 1991).

Constituents	USA	UK	Canada	India	Thailand	Japan	Hong Kong	China	Australia	S. Africa	Poland	Germany
SiO ₂	28-59	37-54	37-59	13-64	27-34	50-62	38-77	44-55	44-73	40-53	43-52	48
Al_2O_3	7-38	17-33	12-24	14-31	19-28	22-30	14-46	20-32	16-33	24-35	19-34	25
Fe ₂ O ₂	4-42	6-22	3-39	3-24	20-24	4-7	1-18	1-17	3-6	5-11	1-13	7
CaO	0-13	1-27	1-13	1-34	11-16	3-7	0-16	5-9	0-9	5-10	2-9	3
LOI	0-48	0-27	0-10	0-16	0-2	1-6	4-8	3-9	1-9	2-11	2-10	-
Glass Content	54-87	54-87	54-95	-	-	56-58	-	29-40	49-60	29-43	-	-

Note: LOI = loss on ignition

2.2 Consolidation Properties and Volume Stability

CCRs have historically been disposed of in two major ways: collected from boilers hydraulically and diverted to a surface impoundment or collected through electrostatic precipitators or flue gas desulfurization systems and dry-placed into CCR landfills. In either of these disposal alternatives, there is traditionally no defined level of compactive effort used and depending on future uses of the disposal sites, the consolidation characteristics of CCRs can be of interest to geotechnical engineers. Again, since CCRs are not naturally occurring soils, there has been little testing on their consolidation properties and volume stability. Table 3 provides compression and recompression indices and coefficients of consolidation determined by different researchers.

Few researchers report a value for the recompression index; in a disposal area, there would not necessarily be an unloading-reloading process during normal operations. Whenever recompression indices are reported, it is usually in reference to reuse of CCRs in construction applications. Furthermore, the recompression indices reported are extraordinarily low. The reported values of coefficient of consolidation, c_v , are highly variable, as might be expected for materials that have non-typical stress histories. Furthermore, it is important to note that values of

 c_v cannot be determined using the traditional Taylor or Casagrande methods, since the majority of deformation for laboratory consolidation tests is complete within one minute; therefore, it is necessary to take deformation readings at very small time intervals (Yudbhir & Honjo 1991). It is also important to note that reported values of c_v mean little independent of the vertical effective stress at which that value was recorded, since the coefficient of consolidation is dependent on both the compressibility of the material and the permeability of the material, based on Terzaghi's original one-dimensional consolidation equation:

$$c_{\nu} = \frac{1}{\gamma_{w}} \frac{k_{\nu}}{m_{\nu}} \tag{1}$$

where $c_v = \text{coefficient of consolidation}$ $\gamma_w = \text{unit weight of water}$ $k_v = \text{vertical coefficient of permeability}$ $m_v = \text{coefficient of compressibility}$

Since both k_v and m_v generally decrease with increasing overburden stress, but not necessarily at the same rate, it is hard to relate the coefficient of consolidation to the compression and recompression indices in a general manner. Consequently, the values of c_v reported in Table 3 should not be taken as "typical" values, because of how c_v is mathematically defined.

Some of the variability of compression and recompression indices and coefficient of consolidation of CCRs can be attributed to the type of CCR. For example, it is logical to assume that bottom ash would have a higher coefficient of consolidation, since it has a higher hydraulic conductivity and a lower compressibility than fly ash. For this reason, variability plots for fly ash and surface impounded ash have been presented separately from those for bottom ash. Figures 3 through 5 present variability plots for the compression and recompression indices for different types of CCRs. Since the recompression index of bottom ash is rarely determined by researchers, the variability plot for recompression index includes fly ash, surface impounded ash, and bottom ash. Figure 6 presents a variability plot for the coefficient of consolidation for CCRs at different placement conditions.

 I2-(1002). (a fail of a fail (2001). I2-(8001). (a fail of a fail of a fail (2007). I2-(8001). (a fail of a fail (2001). I2-(9002). (a fail of a fail (2001). A8-(8001). (a fail of a fail (2001). A8-(8001). (a fail of a fail (2001). A8-(8001). (a fail of a fail of a fail (2001). A8-(8001). (a fail of a f
 Nidharan et al. (2001). I2-(1002). Ia ha neradbirð I2-(8021). Ia ha neradbirð I2-(8021). Ia ha neradbirð Rera et al. (2004). A8-(0005) neradharan (2004). A8-(8001). Ia haran et al. (2010). A9-(9002). Ia haran et al. (2010). A9-(9002). A haran et al. (2010). A9-(9002). A9-(9003). A8-(8003). A8-(8003). A8-(8003). A8-(8003). A8-(8003). A8-(8003). A8-(8003). A8-(8003). A9-(8003). A9-(8003). A9-(9003). A9-(9003).
IZ-(1002). La tanta et al. (2001). IZ-(1002). IZ-(8021). IZ-(8021)
IZ-(1002). La Janaran et al. (2001). J2-(1002). La Janaran et al. (2002). La Janaran et al. (2002). La Janaran et al. (2002). La Janaran et al. (2003). La Janaran et al. (2004). La Janaran et al. (2010). La Janaran et al. (201
IZ-(1002). La Janaran et al. (2001). IZ-(1002). IZ-(8001). IZ-(8001). IZ-(8001). IZ-(8001). IZ-(8001). IZ-(8001). IZ-(8001). IZ-(9002). IZ-(9001). IZ-(900
IZ-(1002). La Janaran et al. (2001). IZ-(10802). IZ-(9802). IZ-(9802). IZ-(9802). IZ-(9802). IZ-(9002). IZ-(0002). IZ-(00
IZ-(1002). (a f al. (2001). 2 IZ-(8021). (a f al. (2002). Bera et al. (2003). 2 IZ-(8001). 2 IZ-(8001). 2 IZ-(4002). 1 AB-(2002). 2 AB-(2002). 2 AB-
IZ-(1002). (a f al. (2001). (2) IZ-(8021). (a f al. (2002). Bera et al. (2003). (2) IZ-(4002) naibne IZ-(4002) naibne AB-(2002). (2) AB-(2002). (2) AB-(2002
IZ-(1002). (a the statution of al. (2001). IZ-(8021). (2002). IZ-(8021). (2002). IZ-(8021). (2004). IZ-(8021). (2004). IZ-(9021). IZ
IZ-(1002). (a fa di nevedari 2 IZ-(8001). (a fa di nevedari 2 IZ-(8001). (a fa di nevedari 2 IZ-(4002). (a fa di nevedari 2 IZ-(4002). (a fa di nevedari 2 AB-(2002). (a fa di nevedari 2). (a fa di neve
IZ-(1002). (a fa di ciadrat ciadrat ciadrat ciadrat ciadrat ciadrat ciadrat ciadrat di ciadrat ciadrat di ciadrat di ciadrat ciadrat di ciadrat di ciadrat ciadrat di ciadrat cia
IZ-(1002). (a fail of a condition of all (2001). (2001). (2002) IS-(8001). (2002). (2002). (2003). (20
IZ-(1002). (a the factor of al. (2001). IZ-(8001). (c) IZ-(8001). (c) Bera et al. (2007) IZ-(4002) (c) IZ-(4002). (c) AB-(2005). (c) AB-(2005
IZ-(1002). (6 19 nörönbirð IZ-(8001). (6 19 nörönbirð Bera et al. (2007) IZ-(2004). (2004). Ag (2005). görönbirð bar (2004). Ag (2005). görönbirð bar disolvirt
IS-(1002). Is the network of a contract of the second seco
Sridharan et al. (2001)-51 Sridharan et al. (2001)- Bera et al. (2007) Sridharan et al. (2007)
Sridharan et al. (2001) - 12-(8201) - 12-(2002) 12-(2002) - 12-2002) - 2002) - 2002) - 2002) - 2002) - 2002) - 2002) - 2002) - 2002) - 2002
IS-(2001) . Is to neterlain?
12-(100C) le taneredbirz
(2002) buz bas ibavit
(4004) bug bug ibavitT
IS-(3005) nesedbiss bne dsesles
IS-(6002) neiedbird briederan
CSOOS) niddbuY bne seO
lakka et al. (2010)
A1-(4002) neibne9
AT-(8661) Is to neverbir2
Sridharan et al. (2001)-FA
Prashanth et al. (1999)
-neinomerdusele8 bne neibne9
(2004) bus brisibevinT
AT-(3005) nenerbing bine reskerg
AT-(2002) nenerbin2 brie dzesłeng
IZ-Z 9JIZ
IZ-4-SI
IZ-E 9712
IS-2 9JIS
IS-L'ajiz
(2791) .ls je sleb2
A7-4-51i2
A7-E9Ji2
Tu et al. (2007)
Kim and Prezzi (2008)
(0691) . Is to nitreM
T are service for some services

Reference	Type of CCR	Country	Cc	Cr	$C_v (cm^2/s)$	Vertical Stress (psi)
Tu et al. (2007)	FA Resed.	USA	0.0390-0.0640	0.0035-0.0072	2.00-70.0	0.203-150
Site 1	SI	USA	0.080-0.710	0.0100 - 0.0300	·	0.694-111
Pandian and Balasubramonian (1999)	FA	India		ı	0.00200-0.0802	0.73-116
Trivedi and Sud (2002)	SI/MH	India	0.00600 - 0.0100	0.000300-0.00300	·	3.34-116
Kaniraj and Gayathri (2004)	FA Comp.	India	0.0410 - 0.0840	0.00800	0.080-2.00	1.42-182
Pandian (2004)	FA	India	0.0490-0.284	ı	$1.16 \times 10^{-5} - 1.27 \times 10^{-4}$	7.12-113
	SI	India	0.0520-0.300	ı	2.93×10^{-7} -8.17×10 ⁻⁴	0.00-56.9
	BA	India	0.0570-0.484	I	7.57×10^{-7} -3.35×10 ⁻⁵	0.00-56.9
Madhyannapu et al. (2008)	FA Resed.	India	0.100-0.167	0.00400 - 0.00800	ı	
Prakash and Sridharan (2009)	FA Comp.	India	•	1	0.140-3.25	•
	SI Comp.	India		ı	0.960 - 10.0	ı
	BA Comp.	India		I	1.43-10.15	ı
Jakka et al. (2010)	FA Comp.	India	0.079-0.246	0.018-0.023	·	7.26-29.0
	BA Comp.	India	0.051-0.059	0.013-0.024	·	7.26-29.0
Kolay and Kismoor (2009)	FA Comp.	Malaysia	0.0490-0.0510	I	ı	319-2467
	SI Comp.	Malaysia	0.0780	ı		319-2468
	BA Comp.	Malaysia	0.103-0.113	ı		319-2469
Muhardi et al. (2010)	FA Comp.	Malaysia	0.150	ı	3.00×10^{-5} -1.53×10 ⁻⁴	,
	BA Comp.	Malaysia	1.54	ı	ı	
Yudhbir and Honjo (1991)	FA Comp.	ı	0.0300-0.375	ı	ı	I
	FA SI	ı	0.0650-0.610	I	I	I
	FA SID		0.610-0.885	ı	ı	ı
CAPCO (1990)	FA Comp.	Hong Kong		ı	9.51×10^{-3} - 1.90^{-2}	
Haws et al. (1985)	FA Comp.	UK		,	9.51×10^{-4} -6.34×10 ⁻³	
Koo (1991)	FA Comp.	Thailand			3.17×10^{-4} -7.61×10 ⁻³	-
FA = fly ash BA = bottom ash SI = surface impoundment ash	SID = surface imp MH = mixed hopp Comp. = compacte	oundment/loos er ash ed	e dry dump ash	Resed. = resedimented		

 Table 3: Compression and recompression indices and coefficients of consolidation for CCRs reported by different researchers.

Engineering Characterization of CCRs

Figure 5: Variability plot of the recompression indices for studies done on fly ashes, bottom ashes, and surface impounded ashes

Figure 6: Variability plot for the coefficient of consolidation of studies done on fly ash, bottom ash, and surface impounded ash.

Electronic Filing: Received, Clerk's Office 08/27/2020Nicholas A. LacourEngineering Characterization of CCRs

If structures are to be built on former CCR disposal areas or dry-disposed ashes are to be placed on hydraulically-placed deposits, volume stability of CCRs can also be of engineering concern. Swell, shrink, and collapse potentials are the three main types of volume instability examined for soils.

According to Sridharan and Prakash (2009), the swell potential of a soil can be examined through the use of the free swell ratio (FSR) which is defined as

$$FSR = \frac{V_d}{V_k} \tag{2}$$

- where V_d = sediment volume of 10 g of oven-dried soil that passes a 425 µm sieve placed in a 100 ml jar which is then filled with de-aired water.
 - V_k = a sample identical to V_d except the solute is carbon tetrachloride or kerosene.
 - **Note:** a fume hood is required if there are any hazardous materials associated with the samples being tested

The swell potential can be determined based on the ranges of FSR as outlined in Table 4:

FSR	Soil Type	Swell Potential
≤1.0	Nonswelling	Negligible
1.0-1.5	Mixture of swelling and nonswelling	Low
1.5-2.0	Swelling	Moderate
2.0-4.0	Swelling	High
>4.0	Swelling	Very High

Table 4: Classification of Soils based on FSR (adapted from Sridharan and Prakash 2000)

Additionally, ASTM D4829 (2003), "Standard Test Method for Expansion Index of Soils," provides a standardized method of determining the swell potential of soils based on the expansion index (EI₅₀). In order to determine the EI₅₀ of a soil, a dried soil sample must first be mixed with distilled water to the approximate optimum moisture content and allowed to sit in an air-tight container for at least 16 hours. Then, the conditioned soil is compacted in a 4.01 inch diameter mold in two two-inch lifts using 15 well-distributed blows of a 5.5 lb, 2.00 inch diameter rammer dropped from a height of 12 inches. Once the sample degree of saturation (S) is measured to be within 40% to 60%, the sample is loaded into a consolidometer and consolidated

for 10 minutes under a load of 1.0 psi before the initial reading on the dial indicator is taken. The specimen is then inundated with distilled water while periodic readings of the dial indicator are made in accordance with test D2435 (2003) for 24 hours or until the rate of expansion becomes less than 0.0002 inches per hour. The EI of a soil is then defined as

$$EI_{50} = EI_{meas} - (50 - S_{meas}) \cdot \frac{65 + EI_{meas}}{220 - S_{meas}}$$
(3)

where S_{meas} = the degree of saturation measured in the test

and

$$EI_{meas} = \frac{\Delta H}{H_1} \cdot 1000 \tag{4}$$

where ΔH = the change in height (D₂ – D₁) of the sample, mm H_1 = initial height, mm D_1 = initial dial reading, mm D_2 = final dial reading, mm

The shrink potential of soils is usually assessed based on that soil's shrinkage limit, which is outlined in ASTM D4943 (2002) and calculated according to equation 5:

$$SL = w - \left[\frac{(V - V_d) \cdot \rho_w}{m_s}\right] \cdot 100$$
(5)

where w = moisture content of the soil at the time it was placed in the dish (%) V = the volume of the wet soil pat = volume of the dish $V_d = \text{volume of the dry soil pat}$ $\rho_w = \text{density of water}$ $m_s = \text{mass of the dry soil pat}$

However, CCRs are generally non-plastic and ASTM D4943 is only applicable when the soil is cohesive in nature. Based on the fact that CCRs generally have a uniform gradation it can be assumed that they would have a high shrinkage limit (Prakash and Sridharan, 2009).

The collapse potential of a soil is the percent change in volume of a specimen after inundation. It is usually determined using oedometer tests and, as a result, can either be expressed mathematically in terms of height or void ratio, according to equation 6.

$$C_p = \frac{\Delta h}{h_0} = \frac{\Delta e}{(1+e_0)} \tag{6}$$

where $\Delta h =$ change in height of the specimen upon inundation $h_0 =$ the height of the specimen prior to inundation $\Delta e =$ change in void ratio of the specimen upon inundation $e_0 =$ void ratio of the specimen prior to inundation

Since collapse potential can change given different applied stress levels and overconsolidation states, there are any number of typical collapse potential values for a given soil, depending on the in-situ stress and the preconsolidation pressure of the soil. Generally, if the collapse potential is below 1%, there is no danger of collapse of soil structure (Mudhyannapu et al. 2008, Trivedi and Sud 2004).

It is important to note that collapse potential increases dramatically for some dry-disposed coal ashes when tested in a moist condition as opposed to a dry condition; even soils that classify as non-collapsible in a dry condition can become collapsible in a moist condition. This is due to the presence of soluble substances not present in the coal ashes disposed of using wet disposal methods (Trivedi and Sud 2004).

2.3 Hydraulic Conductivity

An important soil property for seepage calculations for earthen embankments is hydraulic conductivity. This is an especially important property for CCR surface impoundments, since they tend to be deposited in a meta-stable structure. In addition, the CCRs are often used to construct embankments as the surface impoundments are raised. Hydraulic conductivity of CCRs deposited in surface impoundments can display anisotropy as a result of its cyclic, lacustrine-style deposition. For engineering purposes, the hydraulic conductivity of both the compacted embankment material and the disposed CCR material will be of interest, as these values are used in erosion analyses. Table 5

Electronic Filing: Received, Clerk's Office 08/27/2020 Nicholas A. Lacour Engineering Characterization of CCRs

presents hydraulic conductivities of different types of CCRs from different countries as determined by various researchers. Due to the fact that there are different disposal methods for CCRs and different types of CCRs that are often co-disposed of, there is a wide variety of placement conditions, each of which can potentially create a different soil fabric and therefore a different range of hydraulic conductivities.

The CCRs were divided into two groups in order to assess variability in hydraulic conductivity: fly ash and surface impounded ash/bottom ash. This was done because oftentimes surface impounded ash is made up of both fly ash and bottom ash; this fact, coupled with its loose placement condition ensures hydraulic conductivity will be at the material's naturally highest value. Figures 7 and 8 are variability plots hydraulic conductivity of fly ashes and surface impounded ash/bottom ash from different countries, as determined by different researchers. It is important to note that not all researchers specified whether it fly ash tested was class c or class f (class c exhibits self-cementing properties); this fact could be a further contributor to the variability in values of hydraulic conductivity of fly ashes.

 Table 5: Values of hydraulic conductivity for different CCRs for different countries as determined by different researchers (adapted from Prakash Sridharan 2009)

Reference	Country	CCR Type	Testing Condition	k (cm/s)
Seals et al. (1972)	USA	BA	Relative density $= 50\%$	5.0×10^{-3} to 0.094
McLaren and DiGioia (1987)		Class F FA	$\gamma_{dmax_SP}, \gamma_{dmax_MP}$	1.3×10 ⁻⁵
		Class F FA	SI or poorly compacted	1.8×10^{-5}
		Class C FA	$\gamma_{d \max}$ SP, $\gamma_{d \max}$ MP	1.1×10 ⁻⁵
Martin et al. (1990)		FA	$\gamma_{d \max}$ SP	1.8×10^{-5} to 1.2×10^{-4}
		BA	γ_{dmax_SP}	1.2×10 ⁻³
Yudbhir and Honjo (1991)		Class C FA	γd max	1.0×10^{-7} to 2.0×10^{-7}
		Class F FA	$\gamma_{d \max}$	2.0×10^{-6} to 6.0×10^{-5}
Glogowski et al. (1992)		Eastern US FA	-	1.9×10 ⁻⁵
		Western US FA	-	3.1×10 ⁻⁵
Site 1		SI	Undisturbed	1.1×10^{-3} to 1.7×10^{-2}
Site 3		FA-SI	Undisturbed	7.0×10^{-7} to 6.5×10^{-7}
		BA	Bulk Recompacted	2.3×10 ⁻⁶
Site 4		FA-Comp.	Undisturbed	1.3×10^{-7} to 8.2×10^{-5}
		SI	Undisturbed	1.6×10^{-5} to 6.3×10^{-5}
Site 5		FA-Comp.	Undisturbed	1.5×10^{-5} to 8.0×10^{-4}
		SI	Undisturbed	4.8×10^{-6} to 4.0×10^{-4}
Pandian and Balasubramonian (1999)	India	FA	Compacted to 0.95 γ_{dmax} and saturated	1.4×10^{-5} to 4.2×10^{-4}
Kaniraj and Gayathri (2004)		FA	γd max	4.7×10^{-6} to 6.0×10^{-6}
Prakash and Sridharan (2009)		FA	Compacted at $\gamma_{d max}$ and saturated	8.0×10^{-6} to 1.9×10^{-4}
		SI	-	5.0×10^{-5} to 9.6×10^{-4}
		BA	-	9.9×10^{-5} to 7.1×10^{-4}
Jakka et al. (2010)		FA	loose	7.0×10^{-7} to 2.1×10^{-6}
		FA	dense	3.5×10^{-7} to 9.4×10^{-7}
		BA	loose	$6.0{\times}10^{\text{-6}}$ to $1.3{\times}10^{\text{-5}}$
		BA	dense	1.4×10^{-6} to 3.7×10^{-6}
Indraratna et al. (1991)	Thailand	Class C FA	γ_{dmax_SP}	4.0×10^{-7} to 7.0×10^{-7}
		Class C FA	$\gamma_{d \max_SP}$, 2 weeks curing	<10 ⁻⁷
Gray and Lin (1972)	UK	FA	γd max	5.0×10^{-7} to 8.0×10^{-5}
Porbaha et al. (2000)	Japan	FA	Slurry	10^{-5} to 10^{-4}
			$(e_i = 0.85 \text{ to } 1.02)$	
Skarzynska et al. (1989)	Poland	SI	-	1.5×10^{-5} to 5×10^{-5}
Chan et al. (1986)	Canada	FA	in situ	10^{-7} to 10^{-4}
		BA	-	4.8×10^{-4} to 3.4×10^{-3}
Gitari et al. (2009)	South Africa	FA	Air flush core samples, constant head	4.6×10^{-5} to 6.9×10^{-5}
		BA	Air flush core samples, constant head	8.1×10^{-5} to 4.9×10^{-4}
		FA/BA Dry Dump	Field Slug Tests	2.3×10^{-5} to 9.6×10^{-3}

Note: FA = fly ash; SI = surface impoundment ash; BA = bottom ash; OMC = optimum moisture content; e_i = initial void ratio;

FA-SI = surface impounded fly ash; FA-DS = dry-stacked fly ash; FA Comp. = field-compacted fly ash

2.4 Shear Strength

X-ray diffraction studies indicate that CCRs do not contain any of the clay minerals responsible for the cohesive portion of shear strength in soils (Trivedi and Singh 2004a, Trivedi and Singh 2004b, Ward and French 2005), which means that CCRs must derive their strength entirely from the frictional interaction between ash particles. Through the use of a scanning electron microscope (SEM), it is possible to study the morphological characteristics of coal ash particles and get an idea of their angularity, which would in turn offer clues as to the source of their frictional strength. As shown in Figures 9 and 10, bottom ash is much more angular than fly ash. In general, this can be associated with higher friction angles than fly ash at low confining stresses, which is usually the case. At high confining stresses, the higher angularity could lead to more particle breakage for bottom ash, and consequently to a larger degradation of their frictional resistance.

Figure 9: Micrographs of bottom ash particles magnified 112 and 373 times (Jakka et al. 2010)

Figure 10: Micrographs of fly ash magnified 100 and 2,000 times (courtesy of Kevin Foster).

Shear strength parameters can be determined using several different laboratory test procedures. For CCRs, the most commonly performed tests are the direct shear test, consolidated drained triaxial test, and the consolidated undrained triaxial test. While the consolidated undrained triaxial test provides both effective and total stess strength parameters, most researchers only report effective strength parameters. This is undoubtedly because the rate of loading because of disposal is usually small enough that pore pressure dissipations are able to complete prior to the next disposal cycle; additionally, total strength parameters from CU tests can be misleading because of their dependence on the value of backpressure at which the specimen is sheared. Tables 6 through 8 report shear strength parameters of different CCRs from direct shear, consolidated drained, and consolidated undrained tests, respectively, reported in different studies. Figures 11 through 13 provide variability plots for the effective stress friction angles determined by various studies, compared on the basis of test type. Figures 14 through 16 provide variability plots on the basis of CCR type, while Figure 17 is a variability plot for the total stress parameters for all types of CCRs, since these parameters are not always reported. Variability plots were not made for values of cohesion since CCRs are usually reported to be non-plastic and the cohesions reported were either apparent cohesions of compacted, unsaturated samples or of samples that may have had self-cementing properties that would not be common to

all disposed CCR materials. All acronymns used with the variability plots are consistent with those used in the Tables; for the Figures 14 through 16, DS, CD, and CU designate "direct shear test," "consolidated drained triaxial test," and "consolidated undrained triaxial test," respectively.

Reference	Country	CCR Type	Condition	φ' _p (°)	c' _p (psf)
Kim & Prezzi (2008)	USA	FA	Comp. DoO	32.9-35.8	100-403
		FA	Comp. WoO	31.7-34.4	104-380
		FA	Comp. Sat.	30.2-34.5	58-276
Site 5		SI	Comp. Sat.	26.8-42.2	0
		SI	Undisturbed	23.4-35.4	0
Pandian (2004)	India	FA	Loose Dry	29.0-36.0	-
		SI	Loose Dry	29.0-34.0	-
		BA	Loose Dry	32.0-34.0	-
		FA	Loose Sat.	27.0-37.0	-
		SI	Loose Sat.	25.0-40.0	-
		BA	Loose Sat.	30.0-37.0	-
		FA	Comp.	28.0-42.0	205-819
		SI	Comp.	29.0-38.0	328-1024
		BA	Comp.	30.0-37.0	205-410
		FA	Comp. Sat.	28.0-41.0	-
		SI	Comp. Sat.	29.0-36.0	-
		BA	Comp. Sat.	30.0-37.0	-
Prakash & Sridharan (2009)		FA	Loose	29.0-33.0	-
		SI	Loose	30.0-33.0	-
		BA	Loose	31.0-34.0	-
		FA	Comp.	32.0-37.0	334-543
		SI	Comp.	30.0-33.0	272-334
		BA	Comp.	31.0-34.0	209-397
		FA	Comp. Sat.	32.0-35.0	0
		SI	Comp. Sat.	29.0-32.0	0
		BA	Comp. Sat.	30.0-33.0	0
Kolay & Kismoor (2009)	Malaysia	FA	Comp. Sat.	30.6-34.9	162-168
		SI	Comp. Sat.	26.2	70
		BA	Comp. Sat.	26.6	3.0-14
Muhardi et al. (2010)		FA	Comp.	23.0	251
		FA	Comp. Sat.	26.0	63
		BA	Comp.	32.0	79
		BA	Comp. Sat.	31.0	0

Table 6: Shear strength parameters determined by different researchers using the direct shear test.

<u>Note</u>: ϕ'_p = peak effective friction angle; c'_p = peak effective cohesion; Comp. = compacted; Sat. = saturated; DoO = Dry of Optimum; WoO = Wet of Optimum

Reference	Country	CCR Type	Condition	RC (%)	φ' (°)	c' (psf)
Kim & Prezzi (2008)	USA	FA	Reconst.	95	33.5-47.1	0
		FA	Reconst.	90	27.9-37.9	0
Site 5		SI	Reconst.	-	27.1-31.0	0
Pandian (2004)	India	FA	Reconst.	100	33.0-37.0	418-1942
		FA	Reconst.	100	33.0-43.0	0
Prakash & Sridharan (2009)		FA	Reconst.	95	33.0-43.0	0
Jakka et al. (2010)		FA	Reconst.	-	32.9-37.0	0
		BA	Reconst.	-	33.7-41.7	0
Muhardi et al. (2010)	Malaysia	FA	Reconst.	-	41.0	522
		BA	Reconst.	-	46.0	0
Indraratna et al. (1991)	Thailand	FA	Reconst.	-	26.0	731
		FA	Reconst. Pozz.	-	36.0	37594

Table 7: Shear strength parameters determined by different researchers using the consolidated drained triaxial test.

Note: Reconst. = reconstituted; Pozz. = pozzolanic curing allowed to occur

Table 8: Shear strength parameters determined by different researchers using the consolidated undrained triaxial test.

Reference	Country	CCR Type	Condition	RC (%)	φ (°)	c (psf)	φ'(°)	c' (psf)
Site 1	USA	SI	Undist.	-	11.1-19.5	0-950	25.2-33.0	90-190
Site 2		SI	Undist.	-	12.0-45.5	640-2580	31.8-32.1	0-140
Site 3		FA	Reconst.		-	-	36.0	14.3
		SI	Undist.	-	-	-	39.6	0
		BA	Reconst.		-	-	41.0-44.0	0-261
Site 4		FA	DS, Undist.	-	3.4-37.7	200-1900	28.7-36.7	0-400
		SI	Undist.	-	18.3-27.4	400-1600	29.5-38.6	0-740
Prakash & Sridharan (2009)	India	FA	Reconst.	95	20.0-41.0	0	26.0-39.0	334-2005
		SI	Reconst.	95	25.0-34.0	0-1170	28.0-36.0	585-2109
		BA	Reconst.	95	24.0-35.0	0-564	24.0-35.0	585-1149
Jakka et al. (2010)		FA	Reconst.	-	-	-	22.3-38.5	0
		BA	Reconst.	-	-	-	32.2-42.6	0
Muhardi et al. (2010)	Malaysia	FA	Reconst.	-	41.0	710	-	-
		BA	Reconst.	-	44.0	0	-	-
Indraratna et al. (1991)	Thailand	FA	Reconst.	-	20.0	0	26.0	0

 \underline{Note} : Undist. = undisturbed; Reconst. = reconstituted; DS = dry-stacked in field

30

Figure 14: Variability plot of the effective stress friction angle of fly ashes for all shear strength tests performed by various researchers.

Figure 17: Variability plot of the total stress friction angle of all CCRs as determined by consolidated undrained triaxial tests performed by various researchers.

2.5 Compaction Characteristics

Since CCRs are often used in the construction of embankments for CCR disposal areas, an understanding of their compaction characteristics is necessary to control stability and seepage of the CCR disposal areas. A unique consideration when studying the compaction characteristics of CCRs is their generally low specific gravity. Since CCRs tend to have lower specific gravities and higher air voids than natural soils, their maximum dry density tends to be lower and their optimum moisture content higher than most natural soils (Bera et al. 2007, Prashanth et al. 1999, Trivedi and Singh 2004a). Trivedi and Singh (2004a) associate the high optimum water content of CCRs with the porous nature of the particles; most of the water is absorbed by the particles at lower water contents such that the particles are not workable until higher moisture contents. The lower dry density and higher corresponding water contents of CCRs results in a compaction curve that appears "flatter" than those of most natural fine-grained soils, as shown in Figure 18. The "A-Z soils" included in the plots for comparison are for natural soils from Ohio, as published by J. G. Joslin in the proceedings of the 1958 ASTM Symposium on Soil Testing in Highway Design and Construction.

Bera et al. (2007) also developed empirical models to predict the maximum dry density and optimum moisture content of a specific surface impounded ash, as long as both of these values are known for the standard proctor test:

$$MDD_{E} = 1.60783 \cdot MDD_{proc} + 1.85727 \left(\frac{E}{E_{proc}}\right) - 6.89047 \tag{7}$$

$$OMC_E = 1.73090 \cdot OMC_{proc} - 9.01750 \left(\frac{E}{E_{proc}}\right) - 25.33520$$
 (8)

where $MDD_E =$ maximum dry density at a given applied energy $MDD_E =$ maximum dry density for a proctor test E = amount of energy input for given condition $E_{proc} =$ amount of energy input for a proctor test $OMC_E =$ optimum moisture content for a given applied energy $OMC_{proc} =$ optimum moisture content for a proctor test It should be noted, however, that these relationships were developed using test data from Indian CCRs. Therefore, before using these relationships, it should be verified that they apply to the specific CCRs in question.

Figure 18(a): Compaction curves for different Indian fly ashes compared to those for several natural soils (Sridharan et al. 2001)

Figure 18(b): Compaction curves for different Indian surface impoundment ashes compared to those for several natural soils (Sridharan et al. 2001)

In Figures 17(a) and 17(b), the CCRs sometimes have a higher dry density at a dry condition (w = 0%). This is not a practical condition to use in construction or disposal situations, however, as there would be considerable dust pollution during placement (Sridharan et al. 2001).

Chapter 3

Dynamic Properties of CCRs

Regardless of the fact that CCRs are often composed of mostly fine-grained particles, they are still granular, non-plastic particles that exhibit no cohesion other than apparent cohesion in the moist state (Kaniraj and Gayathri 2004, Prakash and Sridharan 2009). Based on their grain-size, many CCRs could be classified as fine-grained soils, (which are commonly considered to have a lower liquefaction potential), but since these CCRs are also generally non-plastic, they have the potential of being liquefaction-prone. Liquefaction potential of CCRs is higher in the case of impounded CCRs, since these tend to exist at a saturated or nearly saturated state in-situ (and saturation is a necessary condition for liquefaction). In addition, the high moisture contents imply that impounded CCRs will have no negative pore pressures to help stabilize the soil mass under dynamic loading. Furthermore, the generally metastable structure of impounded CCRs makes their dynamic properties of great importance, even at low intensities of shaking. There have been a limited number of publications on the dynamic properties of CCRs; while this section presents and discusses currently published information on the dynamic properties of CCRs, there is still a need for further research in this area.

3.1 Cyclic Shear Strength Properties of CCRs

The most common laboratory test used to assess the dynamic properties of soils is the cyclic triaxial shear test. Cyclic triaxial testing apparatuses are expensive and provide very specific results, so very few commercial consultant firms own or even have access to them. Therefore,

cyclic triaxial testing has traditionally been done at the academic level and has seen little use in commercial consulting. Given the specialized nature of the cyclic triaxial test, there is limited research published on the cyclic triaxial properties of CCRs. Since the cyclic shear strength properties of CCRs is a very specific topic, the research available on this topic is from academics of varied nationalities, all of whom have slightly different methods of analyzing the raw data; as a result, comparing results can be difficult.

Despite differences in how to analyze and present cyclic triaxial test results between researchers, it is useful to compare results using fundamental parameters of cyclic response, such as plots of excess pore pressure (usually excess pore pressure ratio) versus number of loading cycles, or plots of the cyclic stress ratio (CSR= $\sigma_d/2\sigma_{3c}$ ') versus number of loading cycles, which represents a measure of how the shear strength of the material in question degrades with cyclic loading. Figures 19 and 20 present some typical plots comparing excess pore pressures to the number of cycles to initial liquefaction, and Figures 21 through 23 present plots of CSR versus number of loading cycles to liquefaction (generally defined as 5% double-amplitude axial strain) for different surface impounded CCRs at different confining stresses and relative densities.

Figure 19: Plot of excess pore pressure ratio versus number of loading cycles for compacted Indian surface impoundment ash at different cyclic stress ratios and 1 Hz loading frequency (Mohanty et al. 2010).

Figure 20: Plot of excess pore pressure ratio versus number of loading cycles for compacted Indian surface impoundment ash at a cyclic stress ratio of 0.10 and confining pressure of 2214 psf and 0.1 Hz loading frequency (Jakka et al. 2010)

Figure 21: Plot of CSR versus number of loading cycles to liquefaction for different surface impounded CCRs tested by different researchers at confining stresses close to 50 kPa. Jakka et al. loaded specimens at 0.1 Hz to 1 Hz and Dey and Gandhi loaded specimens at 1 Hz. For comparison, curves for sands tested at the same confining pressure are superimposed (Mulilis et al 1976).

Dynamic Properties of CCRs

Figure 22: Plot of CSR versus number of loading cycles to liquefaction for surface impounded CCRs tested by Jakka et al (2010) at a confining pressure of 100 kPa. For comparison, curves for C778 sand at the same confining pressure are superimposed (Carraro et al 2003).

Figure 23: Plot of CSR versus number of loading cycles to liquefaction for different surface impounded CCRs tested by different researchers at 200 kPa confining stress. Jakka et al. loaded specimens at 0.1 Hz to 1 Hz and Mohanty et al. loaded specimens at 1 Hz.

Electronic Filing: Received, Clerk's Office 08/27/2020Nicholas A. LacourDynamic Properties of CCRs

For the two plots of CSR versus number of cycles to initial liquefaction where results for surface impounded CCRs are compared to tests done on sands, it is apparent that the CCRs tested tend to be more resistant to liquefaction than natural sands at higher CSRs, but less resistant to liquefaction at lower CSRs. As more cyclic triaxial tests are run on surface impounded CCRs, it will be more apparent as to whether this is an actual trend, or just an apparent trend in these three studies.

Lastly, many researchers include a plot of the hysteresis loops for a cyclically-tested triaxial sample. This is simply a plot of the deviator stress versus the axial strain through a single load cycle, at which point the plot begins again, creating a nearly-symmetrical shape about the origin of the plot. The area contained within all of these loops represents the cumulative energy dissipated by the soil being tested (Yoshimoto et al. 2006). The cumulative dissipated energy method was used by Towhata and Ishihara (1985) in order to analyze cyclic shear behavior and liquefaction strength of soils. Figure 24 shows a diagram illustrating the dissipation energy contained within a hysteresis loop.

Axial strain Ea

Figure 24: Example of how to determine the energy dissipated by a soil throughout a single loading cycle (Yoshimoto et al. 2006).

Chapter 4

CCR Failure Modes and Monitoring Practices

The critical failure mode for a CCR impoundment is not necessarily the same as for a CCR landfill, since differences in placement techniques for each have a significant effect on the fabric and shear strength properties of the CCRs. Determining the failure modes and developing monitoring practices for CCR impoundments can be done using the same methods as for mine tailings dams because of their similar structure. CCR landfills can be monitored much like any other earthen embankment (with material properties being the major difference), except that unlike most embankments, there is no end of construction until the landfill is retired.

4.1 Surface Impoundments

The observational method is a method of risk management outlined by Dr. Ralph Peck as the process of making design adjustments based on observed behavior in a given structure. The design can be adjusted to be either more or less conservative in order to optimize design (Martin and Davies 2000). This method of risk management is ideal for use with tailings dams since tailings dams are continuously constructed until they are retired; the same is true of CCR surface impoundments, which indicates that such methods could easily be applied to CCR surface impoundment monitoring programs. Figure 25 is a flow chart illustrating the risk management process utilizing the observational method, as applied to tailings dam design; however, the

process is general enough that the same or a slightly modified flow chart could be used for surface impounding ash structures.

Another important consideration when developing a monitoring plan for surface impoundments is whether the dikes were constructed using the upstream or downstream methods, since use of the upstream method can lead to weaker dike foundations and an increased probability of sudden or catastrophic failure (Martin and Davies 2000). The upstream construction method consists of constructing the dike of a new phase of a disposal area partly on the top of the previous phase dike and partly on the upstream disposed material; contrarily, the downstream construction method consists of constructing the new phase dike partially on the previous phase dike and partly on the upstream disposal area. Figure 26 illustrates that the weaker foundations of mine tailings constructed using the upstream method is evident based on the prevalence of certain failure modes for upstream tailings dams as compared to other types of tailings dams, compared to 24% for other types of tailings dams).

Taking all of these factors into consideration, a sample surveillance plan schedule for a mine tailings impoundment is provided in Figure 27. As with the risk management chart presented in Figure 25, this flowchart is general enough that it could be used in its current form, or slightly modified in developing a surveillance plan for CCR surface impoundments.

Figure 25: Flow chart illustrating risk management utilizing the observational method (after Martin and Davies 2000)

Figure 26: Comparison of failure modes of upstream mine tailings dams as compared to other types of mine tailings dams (modified from Martin and Davies 2000)

Nicholas A. Lacour CRR Failure Modes and Monitoring Practices

Figure 27: Sample surveillance plan schedule for a mine tailings impoundment (after Martin and Davies 2000)

Since CCR surface impoundments can have containment dikes constructed out of CCR material, natural soils, or a combination of both and these landfills have the potential to collect precipitation. An analysis procedure that can be used alongside the observational method is to treat them as earthen dams according to recommendations of the Bureau of Reclamation and the Army Corps of Engineers.

The Bureau of Reclamation's *Dam Safety Risk Analysis Best Practices Training Manual* (Scott et al. 2010) provides an overview in Chapter 1 of their recommended method for determining potential failure modes of dams for use in conducting risk analyses of dams. In Chapter 1, the authors identify determination of potential failure modes of dams as the basis for risk evaluations, making it one of the most important steps in risk analysis of a dam. They recommend a comprehensive and thorough review of all relevant background information such

Electronic Filing: Received, Clerk's Office 08/27/2020 Nicholas A. Lacour CRR Failure Modes and Monitoring Practices

as, but not limited to, geology, design, analysis and construction documentation, flood and seismic loadings, operations, dam safety evaluations, and performance and monitoring documentation. Additionally, they recommend a site examination, including questioning of the operations personnel as to how unusual events are handled and what they consider to be the vulnerabilities of the structure. The data review process should include several qualified professionals from different disciplines to ensure a thorough investigation. Lastly, the authors outline three major parts in describing a potential failure mode:

- The initiator, or what causes the initiation or onset of the failure mode
- Failure progression, a step-by-step outline of mechanisms that lead to failure
- The resulting impacts, a description of the expected method and magnitude of a failure if it were to occur

For more in-depth guidance on determining failure modes and developing a risk analysis program for a specific structure, the U.S. Bureau of Reclamation's *Dam Safety Risk Analysis Best Practices Training Manual* can be accessed online at http://www.usbr.gov/ssle/damsafety/Risk/methodology.html, entitled "Complete Best Practices Document."

4.2 CCR Landfills

CCR landfills are generally placed at a moist state and compacted to some degree, being constructed in a similar manner to regular earthen embankments. As a result, they can be analyzed like any other earthen embankment, with special attention paid to the engineering properties and placement conditions of the CCR materials used in the embankment. The placement method for CCR materials in CCR landfills results in less uncertainty in their fabric and relative density, generally resulting in an overall more stable structure than with surface impoundments.

Ideally these compacted CCR embankments would remain well-drained, but depending on the geology of the site and variability in the hydraulic conductivity of the CCR materials, monitoring

Electronic Filing: Received, Clerk's Office 08/27/2020 Nicholas A. Lacour CRR Failure Modes and Monitoring Practices

the groundwater table within these areas and how it is affected by rainfall patterns is good practice, unless it is clearly apparent that such monitoring is unnecessary. An additional consideration with CCR landfills is the need to continually condition the landfill surface with water in order to cut down on dust pollution and surface erosion. Ideally, slopes of CCR landfills should be seeded as soon as is feasible, in order to manage surface erosion and eliminate the need to continually condition the moisture of the slopes.

One unique case would be for sites where a CCR landfill is constructed over a retired surface impoundment. This is an appealing option to most CCR disposers, since land area can be reused, negating or delaying the need to purchase new land to construct a disposal area. Since the foundation material cannot be as well-characterized as the material being placed, a more rigorous design and monitoring procedure would be necessary, perhaps the same as or similar to those discussed in section 4.1.

4.3 Failure Modes

Failure modes for CCR surface impoundments and landfills include all of the usual failure modes for a dam or embankment. However, since disposal operations continue for years or decades, the need to continually monitor disposal areas for signs indicating the initiation of a particular failure mode is very important. Since surface impounded CCRs generally have a less stable structure than CCR landfills, they will generally tend to require more vigorous monitoring. Because of the differences in disposal methods between CCR surface impoundments and CCR landfills, the most likely failure modes will not be the same for each structure.

The most common failure modes for earthen dams and embankments include internal erosion or piping (of embankment or foundation materials), surface erosion leading to global instability, excessive seepage leading to an embankment breach, overtopping during a storm event, loss of freeboard due to excessive embankment settlements or subsidence, lateral movement of the embankment, and failure as a result of a seismic event (MSHA 2009; Martin and Davies 2000). Many of these failure modes are included in Figure 27, with common warning signs indicating the initiation of these failure modes.

Electronic Filing: Received, Clerk's Office 08/27/2020 Nicholas A. Lacour CRR Failure Modes and Monitoring Practices

The majority of these failure modes can be recognized with good monitoring practices, with the exception of failures due to seismic events, for obvious reasons. There is little data on the performance of CCR disposal areas during seismic events and also very little data on the dynamic properties of CCR materials. As a result, dynamic properties of CCRs is an area where further research and laboratory testing is required.

The overall uncertainty in the engineering properties of CCR materials make it necessary to be more vigilant with monitoring practices in order to recognize when different failure modes are initiated so that remedial actions can be taken to prevent costly failures, both on an economic and life scale. Since surface impoundments often most closely resemble tailings dams in their design, a good reference for monitoring practices and identifying failure modes for surface impoundments is the MSHA 2009 "Engineering and Design Manual: Coal Refuse Facilities," which can be accessed at:

http://www.msha.gov/Impoundments/DesignManual/ImpoundmentDesignManual.asp.

Chapter 5

Slope Stability of CCRs

The basic principles of slope stability and methods of assessing slope stability of CCR surface impoundments and landfills are the same as for naturally occurring soils; however, the results of these analyses can be very different based on the unique properties of CCR materials. For example, while an ash might have a high percentage of clay-sized particles, they rarely have any cohesion at all and may be very prone to erosion; many naturally occurring soils with clay-sized particles have a cohesive component of strength and are usually considered erosion resistant. In most instances, CCR disposal areas will not be loaded enough to incur excess pore pressures that will not be fully dissipated by the next loading cycle (the next workday). For this reason, it is generally only necessary to perform effective-stress steady-state shear strength slope stability analyses for CCR disposal areas. Special analyses, such as rapid draw-down analyses may be necessary as dictated by site geometry and design rainfall events.

5.1 Limit Equilibrium and Finite Element Analyses

The majority of slope stability analyses today are performed using commercial software programs that utilize limiting equilibrium analyses and/or finite element analyses of slope stability and seepage through slopes. It is good practice and the recommendation of the United States Army Corps of Engineers (USACE) that some sort of check be done on the results of these software programs. In their Slope Stability Manual (EM 1110-2-1902), the USACE states that, "verification should be commensurate with the level of risk associated with the structure," and that one or more of the following methods should be used in verification of the initial analyses:

- Graphical (force polygon) method
- Spreadsheet calculations
- A second slope stability program
- Slope stability charts

The following example is of a slope stability analysis of a CCR surface impoundment using a limit equilibrium-based software program that also has a built-in finite element groundwater seepage option. The premise of this example is that a client wants to construct a dry-stacked CCR landfill on top of a retired surface impoundment. A thin layer with increased cohesion was included at the surface of all slopes in order to eliminate infinite slope failures that are solved with vegetation; this layer is not included in the table of strata properties, presented in Table 9.

Strata	γ (pcf)	Ν	σ_0' (tsf)	φ' (°)	c' (psf)	k (ft/s)	Sources	
SI CCRs	92.0	N/A	N/A	25.2	0	2.55 x 10 ⁻⁶	LT	
Compacted CCRs	103.5	N/A	N/A	33.0	0	3.61 x 10 ⁻⁷	Tables 6-8, Table 5	
Embankment Fill	112.7	N/A	N/A	33.8	0	1.79 x 10 ⁻⁸	LT	
RR Embankment Fill	122.0	4.0	0.34	33.7	0	3.00 x 10 ⁻⁸	Kulhawy and Mayne (1990)/LT	
Alluvium	110.0	11.0	0.88	40.6	100	3.28 x 10 ⁻⁸	Kulhawy and Mayne (1990)/LT	
Saprolite	110.0	35.0	1.2	29.6	420	9.35 x 10 ⁻⁷	LT	
Partially Weathered Rock	120.0	N/A	N/A	30.0	500	3.28 x 10 ⁻⁹	Assumed based on parent material	
Bedrock	170.0	N/A	N/A	30.0	$1.4 \ge 10^5$	3.28 x 10 ⁻¹⁰	Barton and Choubey (1977)	

Table 9: Summary of shear strength and hydraulic parameters used in CCR surface impoundment slope stability example.

Note: LT = laboratory testing

Analyses were performed for six different conditions: three geometries, each with an in-situ water table and a hypothetical high water table. Figure 28 shows the in-situ subsurface conditions, while Figures 29 through 31 provide the output results with slip surfaces below specified factors of safety shown for the six geometries considered. All slip surfaces shown with a factor of safety value are the lowest factor of safety for that slope geometry.

Figure 28: Subsurface profile of a slope stability example for an SI CCR embankment.

Figure 29: Analyses for the in-situ condition, first with the in-situ measured water table (above) and then with a hypothetical higher water table (below). Slip surfaces are shown for factors of safety below 1.7 for the above case and between 1.0 and 1.2 for the below case.

Figure 30: Analyses for an added upstream dry-disposed cell over the surface impoundment, for the in-situ water table (above) and for a hypothetical higher groundwater table (below). Slip surfaces with factors of safety between 1.5 and 1.6 are shown in the above case and between 1.2 and 1.3 for the below case.

Figure 31: Analyses for an added upstream dry-disposed cell above the surface-impoundment for the in-situ groundwater table (above) and for a hypothetical higher groundwater table (below). Slip surfaces with factors of safety between 1.5 and 1.7 are shown for the above case and between 1.2 and 1.4 for the below case.

In all of the geometries considered in these analyses, a thin layer with a low cohesion was included in order to eliminate infinite slope failures that are easily remediated by keeping the slopes moist or vegetated. In addition, all of the geometries analyzed for the in-situ phreatic surface resulted in acceptable factors of safety, since the in-situ water table is so low compared to the site geometry. However, with a slight rise in the water level (perhaps as the result of a 100-year storm event), the factors of safety drop dramatically. This is the result of the fact that the embankment is constructed out of nonplastic soils that completely derive their strength from the frictional component of shear strength. As the water table rises, buoyancy effects decrease the effective overburden pressures in the geometry, thereby decreasing the slope shear strength and decreasing the factors of safety of all surfaces considered. Furthermore, the very low permeability of the embankment material makes this water table condition a real possibility, if no form of drainage through the slope is provided.

Chapter 6

Settlement Calculations for CCRs

It is common to see consolidation data reported for CCRs in research publications. However, given that CCRs often tend to be fairly free-draining, it would seem odd to use these values to determine settlement of CCRs, given that a structure or embankment were constructed over previously disposed CCRs. However, any methods developed to calculate settlements in sands are not necessarily applicable to CCRs or to silt-sized materials either. In this chapter, a comparison of common methods of calculating settlements will be made for CCRs at a specific site where a test fill was performed and actual CCR settlements monitored.

6.1 Test Fill Results

The results of a test fill of compacted, dry-placed fly ash performed over an approximately uniform 50 ft deep deposit of surface impounded ash was provided by S&ME. The test fill was 20 ft high and had lateral dimensions of 250 ft by 250 ft. The side-slopes all-around were 3H to 1V, making the entire footprint of the fill about 370 ft by 370 ft, or 136,900 ft². For the purposes of these analyses and the sake of simplicity this load will be characterized as a constant 20 ft load over the 250 ft square footprint of the test fill. The recorded settlements at the center of the test fill area were between 18.0 and 19.5 inches.

6.2 Settlement Calculation by Consolidation Theory

For increased accuracy, the surface impounded layer is divided into sub-layers and the settlements calculated for each layer and added together for the overall settlement. It is assumed that since the CCR material has not been loaded in the past that it is in the normally consolidated condition and that they unit weights of the surface impounded CCRs and dry-placed CCRs are 95 pcf and 100 pcf, respectively. Four sets of consolidation tests were performed on the impounded CCR material that made up the foundation for the test fill; the compression ratio for the test closest to the depth of the layer being considered is used in calculating the settlement in that layer. The water table is located 8 ft below the ground surface:

Table 10: Consolidation settlements calculated for test fill placed over a CCR surface impoundment.

Layer	T_{L} (ft)	D_{CL} (ft)	P ₀ (psf)	ΔP (psf)	P _f (psf)	c_{ec}	S_{i} (in)
1	5	2.5	237.5	2000	2237.5	0.20225	11.82
2	10	10	587.7	2000	2587.7	0.20225	15.62
3	15	22.5	832.2	2000	2832.2	0.07299	6.99
4	20	40	1158.2	2000	3158.2	0.07299	7.63

Note: T_L = layer thickness, D_{CL} = depth to center of layer,

 P_0 = initial stress condition, D_P = change in stress, P_f = final Σ 42.07

stress condition, and S_i = settlement for a specific layer

As displayed in Table 10, the settlements estimated using consolidation theory are just over twice the amount observed in the test fill. This is not really surprising since CCR materials do not tend to behave like soils where consolidation theory is used to calculate settlements; generally, plots of volumetric strain vs. normal stress from consolidation tests performed on CCRs do not have clearly log-linear portions corresponding to a recompression and compression ratio. As a result, depending on what values are assumed for $c_{\epsilon c}$ and $c_{\epsilon c}$, the settlement could either be greatly overestimated or underestimated, depending on different individuals' interpretations of the plot.

6.3 Settlement Calculation by D'Appolonia Method

The D'Appolonia (D'Appolonia et al. 1970) method of calculating settlements in sand is based on elasticity theory and can be applied to this sort of example with some moderate assumptions. Equation 8 is the equation developed by D'Appalonia et al. (1970):

$$\rho = \mu_0 \mu_1 \frac{qB}{M} \tag{9}$$

where ρ = settlement μ_0, μ_1 = geometry factors from Figure 36 q = applied bearing pressure B = footing width M = 1-dimensional compression modulus

Figure 32 provides plots used to determine the geometry factors, while the applied bearing pressure and footing width are the same as determined in section 6.2. From logs of CPT tests performed at the test fill location, the average M measured over the depth of the CCR deposit was about 45 tsf (based on CPT correlations).

Given the dimensions of the test fill given in section 6.1 and Figure 32, μ_0 is estimated as 1.0 (since the fill is at the ground surface) and μ_1 would likely be around 0.14. The settlement can now be calculated as:

$$\rho = 1.0 \cdot 0.14 \cdot \frac{1 \operatorname{tsf} \cdot 250 \operatorname{ft}}{45 \operatorname{tsf}} = 0.777 \operatorname{ft} = 9.33 \operatorname{in}$$

The most obvious problems with applying this method to placement of a fill is that it was developed for shallow foundations, which are a rigid structure and it was developed for sands, while CCRs are usually classified as silts according to the USCS. Tan and Duncan (1991) cite that this method tends to underestimate settlements around 50% of the time, as it certainly does in this case.

Since this method underestimates the settlements observed at this site by about 50 percent, it may be useful to determine what value of compressibility modulus actually give an accurate settlement:

$$M = \mu_0 \mu_1 \frac{qB}{\rho} = 1.0 \cdot 0.14 \cdot \frac{1 \text{ tsf} \cdot 250 \text{ ft}}{1.5833 \text{ ft}} = 22.1 \text{ tsf}$$

This value for the compressibility modulus is equivalent to an average modulus calibrated to the observed settlements. While one data point is not sufficient to develop a correlation, if enough settlement tests were conducted for CCR materials, it would be possible to develop a CPT-*M* correlation that better predicts settlements than the one used in this investigation.

Figure 32: Plots published by D'Appolonia et al. (1970) to determine the values of the geometry factors to be used in footing settlement analyses.

6.4 Other Observations

As an alternative to specific methods of settlement calculations, if it is assumed that the fill is of large lateral extent, a basic calculation of settlement can be made using M, the pressure applied by the fill, and the depth of the soil strata being filled:

$$S = \frac{PZ}{M} \tag{10}$$

where P = the pressure applied as a result of the fill Z = the depth of the soil where settlements are being considered

Again using a value of M = 45 tsf, the settlement is calculated as 13.33 inches. This is still an under-estimate of settlement for this test fill, but given that a CPT correlation for M in CCR materials was developed, it may be possible to calculate more precise estimates of settlement. Reduction factors could then be applied to equation 10 in order to attain an acceptable level of reliability.

A comparison of Young's modulus of soil (E_s) can also be made using Hooke's Law and the observed settlement:

$$E_s = \frac{PZ}{S} \tag{10}$$

where P = the pressure applied as a result of the fill Z = the depth of the soil where settlements are being considered S = the observed settlements after fill placement

versus the correlation of CPT tip resistance (q_i) to E_s used in Schmertmann's CPT settlement calculation method:

$$E_s \approx 2.5 \cdot q_t \tag{11}$$

Using Hooke's Law with a settlement of 19 inches and an applied fill pressure of 1 tsf, the E_s calculated is 31.6 tsf. Using the CPT correlation given in equation 11, the average CPT tip resistance over the depth of the CCR deposit below the test fill was about 17 tsf, which would return an E_s value of 42.5 tsf.

The accuracy of these values of E_s are questionable, however, Hooke's law assumes a linearelastic stress-strain condition and the CPT correlation was developed for use with sandy soils. Ideally, CPT correlations should be developed specifically for CCR materials and E_s , which would require a large volume of CPT tests and data analysis.

Chapter 7

Reconstitution Technique for Surface Impounded CCRs

Sample reconstitution techniques try to balance process simplicity with matching the in-situ fabric of the soil as closely as possible. Some reconstitution techniques commonly used on sand and non-plastic silt materials include moist tamping methods, air and water-pluviated methods, and slurry deposited methods. In this chapter, a brief overview of these various methods is given and a technique not yet applied to coal ash materials is analyzed when used with surface impounded CCR materials (will be referred to as SI CCRs throughout this chapter).

7.1 Moist Tamping

The first moist tamping method was proposed by Ladd (1978) in a paper entitled "Preparing Test Specimens Using Undercompaction." In this method, specimens are formed by hand-tamping of moist soil (w% = 20% to 70%) in equal lifts within a triaxial sample split mold, while increasing the dry mass of soil in each subsequent lift. The soil samples should be mixed with water at least 16 hours prior to use and the lift thickness should not exceed 1 inch for specimens with a diameter of less than 4 inches. Ladd provided an equation to calculate the percent undercompaction for each layer placed:

$$U_n = U_{ni} - \left[\frac{(U_{ni} - U_{nt})}{n_t - 1} \times (n - 1)\right]$$
(11)

where U_{ni} = percent under-compaction selected for first layer U_{nt} = percent under-compaction selected for final layer (normally zero) n = number of layer being considered n_i = first (initial) layer n_t = total number of layers (final layer)

The U_{ni} of the first layer is usually between 0% for very dense specimens and 15% for very loose specimens. In order to determine the correct U_{ni} , a series of cyclic triaxial tests must be run with the same effective consolidation stresses and CSR, but with different values of U_{ni} . The specimen then observed during testing and the following observations indicate an inappropriate value of U_{ni} :

- Excessive necking or bulging in any part of the specimen during cyclic loading.
- Non-uniform vertical strains during unconsolidated-undrained loading.
- A honeycomb soil fabric structure at either end of the specimen.
- A non-uniform dry unit weight along the height of the specimen.

Other moist tamping techniques modify this method slightly, usually by either changing the method in which under-compaction is addressed or by defining a specific compaction energy to be used in compacting the sample. This method can be laborious if the correct value of U_{ni} must be determined, since a whole test regime must be completed. Additionally, with regards to hydraulically-placed soils, the fabric of the sample does not match in-situ conditions well.

7.2 Air/Water Pluviation

"Pluviation" or "raining" of soil is a technique first published by Kolbuszweski in 1948. In this technique, the soil is pluviated from a separate apparatus into the soil mold, either in a dry state, or in water. These apparatuses vary in complexity and have various opening sizes and diffuser designs. By controlling the flow rate of the soil through the diffuser and the fall height of the sand, it is possible to place the soil at varying relative densities (Rad and Tumay 1987).

While air-pluviated samples can provide relatively uniform specimens and is a good technique for modeling Aeolian deposits of poorly graded sands and silts, well-graded sands or sands with high fines content have a tendency to segregate. Furthermore, the fabric of the sample can be disturbed during the saturation phase of triaxial testing due to fines washing out of their original placement (Keurbis and Vaid 1988). Air-pluviation would not likely model the fabric of surface-impounded CCRs well, since these CCRs are deposited in a hydraulic environment. Furthermore, the high content of non-plastic fines in CCRs would make loss of soil due to dust very high.

Similarly, water-pluviated specimens form uniform samples of poorly graded soils, though usually at lower relative densities than air-pluviated specimens, since soils fall at a slower velocity through water than through air. However, with well-graded soils, or soils with high fines contents, particle segregation can be a problem with this technique (Keurbis and Vaid 1988). Particle segregation would also be an issue with surface impounded CCRs, since these tend to be a mixture of bottom ash and fly ash.

7.3 Slurry Deposition Techniques

Like the previous two methods, there are several different slurry deposition methods. The first slurry deposition method was first developed by Keurbis and Vaid (1988), which is the technique that is being assessed for use on surface impounded CCRs in this thesis, with some slight modifications. For the sake of avoiding any redundancy, the procedure for this technique will be outlined with specific reference to its use on SI CCRs, with departures from the original procedure of Keurbis and Vaid noted.

7.4 Slurry Deposition Technique Applied to SI CCRs

The basic premise of the slurry deposition technique is to form a lean (just enough water to allow for effective soil mixing), saturated slurry of soil that can then be deposited directly from a mixing tube into a triaxial split-mold, with minimal disturbance to the mixture. The slurry should be lean enough to avoid the development of sedimentation currents during the transfer from the mixing tube to the split-mold, but not so lean that mixing becomes difficult. In addition, the procedure ensures that the sample will be fully or very close to fully saturated upon completion. The samples are deposited very loosely initially and can be densified to higher relative densities

by vibration. In their original slurry deposition method, Keurbis and Vaid recommend de-airing the soil-water mixture and then pluviating it into the mixing tube in order to better ensure saturation. However, CCRs can be fine enough that a considerable amount of the sample (of a specific grain-size) can be lost in the pluviation process. Therefore, the CCR samples prepared using this method are simply added to de-aired water directly into the mixing tube in order to minimize sample loss during the preparation process; if saturation ratios using this method are unacceptable, a soil-water mixture can de-aired under a vacuum or by boiling and then transferred directly to the mixing tube. The apparatus required for the CCR slurry deposition technique are as follows:

• Acrylic mixing tube, with an outer diameter slightly smaller than the target diameter of the sample being formed and a plug to seal off one end. The end opposite of the mixing tube will have rubber gasket seal glued around the rim. The other dimensions of this tube will be discussed later.

Figure 33: Acrylic mixing tube with a rubber stopper on one end and rubber gasket seal glued to the opposite end.

• A thin metal disk approximately the same diameter as the bottom porous disk used in testing.

Figure 34: Thin metal disk approximately the same diameter of the bottom porous disk.

- A rubber or latex membrane with a smaller diameter than the mixing tube. Standard store-bought balloons can be cut to fit and are a cheap, readily available alternative.
- Water bath container for the acrylic mixing tube, large enough to completely submerge the mixing tube.

Figure 35: Water bath large enough to completely submerge the mixing tube and allow for easy placement of the porous disk and metal plate. The rubber membrane can also be seen rolled down around the mixing tube.

• Water bath container for the triaxial cell base-platen that can at least submerge the bottom drainage line and the porous disk when the mixing tube is placed on it.

Figure 36: Water bath large enough to accommodate the bottom of the triaxial cell and submerge the bottom platen.

- A split-mold triaxial sample former.
- A collar that fits over the split-mold to accommodate the temporary increased volume of the sample when it is first placed.

Figure 37: A custom-made split-collar to accommodate the additional volume of soil when the slurry is first placed in the specimen split-mold. This collar was machined out of nylon to fit the dimensions of the split-mold being used and the flexible collar used to accommodate the extra water volume when the slurry was placed.

• A small mechanical shaker or mallet to densify the sample once it is placed. If a mallet is used, a heavier mallet is best, as it transfers more energy than a standard rubber mallet.

In their original slurry-deposition method, Keurbis and Vaid made their soil-water mixtures using dried soil; for SI CCRs, this would be impractical because of the dust that would be lost in handling it in a dry state. Thus, it is recommended that the SI CCRs be mixed at a target water content in order to make it more workable. Once the soil is well-mixed, several small samples should be oven-dried to verify that the moisture content of the soil is homogenous.

The mixing tube should have the thin rubber membrane rolled down over the end with the rubber gasket seal and the other end plugged with the stopper. The moist CCR specimen is placed in the mixing tube, which should then be filled with de-aired water (some water can be in the tube prior to adding the moist soil in order to help collapse the structure of the moist CCRs and decrease their volume during placement in the tube). The mixing tube is now placed into the de-aired-water bath. Once the mixing tube is in the water-bath, a saturated, de-aired porous disk with a filter paper attached is placed on the open end, such that it is completely submerged in the water bath; some fines will escape the mixing tube while it is submerged and before the porous disk is placed over the opening (see Figure 38), so these fines should be put into a container to be oven-dried and weighed in order to adjust the dry mass of the sample.

Figure 38: Placement of the porous disk and transferring of the fines lost in the water bath to a container to be oven-dried and weighed.

Electronic Filing: Received, Clerk's Office 08/27/2020Nicholas A. LacourReconstitution Technique for SI CCRs

At this point, the thin rubber membrane is rolled over the porous disk, such that a small portion of the center of the disk is exposed. The thin, metal disk is now placed over the porous disk and membrane and the mixing tube is withdrawn from the water bath, while keeping firm pressure on the metal disk. The securing of the porous disk with the thin rubber membrane and placement of the metal disk are shown in Figure 39.

Figure 39: Securing of the porous disk with the thin rubber membrane and placement of the thin metal disk over the opening in the membrane.

Now the mixing tube is removed from the water bath while maintaining firm pressure on the thin metal disk and the soil slurry mixed vigorously, end-over-end for the next twenty minutes, to ensure homogeneity of the slurry. After twenty minutes has passed, the mixing tube is placed disk-end down and the mixture is allowed to settle to its loosest stable state. When the mixture has stabilized, the metal disk is removed (it should be held in place by suction when the mixing tube is lifted), the membrane rolled back to the edges of the porous stone, and the entire apparatus placed porous-disk-down onto the base platen, which is submerged in another de-aired water-bath. The rubber membrane around the mixing tube is now rolled up and off of the mixing tube. The sample membrane has been rolled down around and attached to the bottom platen with two o-rings prior to submerging the base platen in the de-aired water-bath and it is now rolled up and over the outside of the mixing tube. The entire bottom platen can now be removed from the water bath and the split mold formed around the mixing tube and sample membrane. Rolling of

the membrane over the mixing tube and placement of the split mold and collars after removal of the triaxial cell base from the water bath is illustrated in Figure 40.

Figure 40: Rolling up the membrane around the mixing tube and placement of the specimen split-mold, the slurry extension collar, and the water extension collar after removal of the triaxial cell base from the water bath.

Once the extension collars for the split-mold is attached, a vacuum is applied between the split mold and the membrane; then, if additional volume is required to accommodate water volume, either a larger membrane can be secured using a hose clamp, or a flexible rubber PVC connection can be used (the flexible PVC connection was used in this experiment, as shown in the right-hand photograph in Figure 40). The last step before transferring the slurry to the split mold is to add a de-aired water bath to the split mold, outside of the mixing tube; this ensures minimal disturbance of the CCR material as it is transferred from the mixing tube to the splitmold. The rubber plug on the mixing tube can now be removed and the mixing tube slowly extruded, such that disturbance to the slurry is minimized as it is deposited in the split-mold. When the mixing tube has been fully extruded, the water level can be adjusted by allowing drainage through the drainage lines on the bottom platen (alternatively, some of the water and fines mixture at the top can be basted off and put into the same container as the fines from the

Electronic Filing: Received, Clerk's Office 08/27/2020Nicholas A. LacourReconstitution Technique for SI CCRs

mixing tube water bath and oven-dried and later weighed to save time). Once the water level has dropped enough to allow removal of the extra membrane or flexible PVC connection, the slurry can be densified by attaching the top platen (which also has a filter-paper applied), applying a small pressure, and vibrating the sample if necessary, while allowing excess pore pressures to dissipate through top and bottom drainage lines, as shown in Figure 41. This should be done such that the piezometric pressure is the same across the sample, which was postulated to form specimens of sand at uniform densities with height by Vaid and Negussey (1988).

Figure 41: Setup used to densify SI CCR slurry-deposition samples. Notice that the short-circuit between the top and bottom drainage is being used to drain the sample as it is densified with the top platen applied. The top platen fits snugly enough into the extension collar to keep a water-proof seal. The white piece on the top of the triaxial base is simply a part to keep the piston plumb as the slight pressure is applied to the top of the sample during densification.

This vibrating can be accomplished with either a mechanical shaker or by tapping the side of the split mold gently with a mallet. However compaction of specimens to high relative densities can take quite a long time using a mallet, so a mechanical shaker would be preferable for SI CCR specimens. Once the target sample height is reached (and thereby the target sample volume reached), the extension collar is removed, the membrane is secured to the top platen with two o-
rings, and a small vacuum pressure is applied to the sample to allow removal of the split mold. The dimensions of the sample are then measured and the sample is placed into the triaxial testing apparatus.

The dimensions of the acrylic mixing tube are determined based on the minimum density of the largest volume of soil that will be used in making a sample. That is, the length of the tube is determined based on the amount of soil required in forming the densest sample to be tested, placed at a zero percent relative density. Keurbis and Vaid found that this volume, increased by five to ten percent is sufficient to allow for adequate slurry mixing, while avoiding large particle sedimentation distances. A sample calculation determining the appropriate length for a mixing tube is included in the appendix.

7.5 Analysis of Slurry Deposition Technique with SI CCRs

In order to assess the slurry deposition technique as applied to SI CCRs, relative density and gradation were determined for the top, middle, and bottom portions of the sample. Since CCRs tend to be non-plastic and negative pore water pressures in a moist sample are not high enough to ensure no disturbance of fabric during the verification process, a gelatin solidification technique developed by Emery et al. (1973) for use with sand specimens was modified for use in this experiment. Gelatin was chosen as the solidifying agent because it is easily dissolved using heat after the volume of each individual slice of the specimen is determined. Then, by adding bromelain, a proteolytic enzyme, the gelatin is broken down, leaving a brittle crystal that can then be avoided when selecting a sample to run a hydrometer test on, and that can be washed out when the gradation is analyzed above the #200 sieve.

SI CCRs have a wide range of hydraulic conductivities (a result of how they are generated and placed), sometimes being similar to sands and other times being more similar to silts. For this reason, the time required to permeate these samples with a gelatin solution is much longer than for clean sand samples. As a result, it was determined that a lower concentration should be used than recommended by Emery et al., such that the solution remains a liquid at room temperature, but is solidified by surrounding the sample in the split mold with an ice-bath; this is explained in more detail in the following paragraphs.

Electronic Filing: Received, Clerk's Office 08/27/2020Nicholas A. LacourReconstitution Technique for SI CCRs

Once the compaction of the slurry deposited sample was complete, height measurements were made at four locations (front, back, right, and left sides of the top platen) using the frame of the triaxial cell and a Mitutoyo micrometer. The height of the sample was determined by subtracting the thicknesses of all the component parts that are not soil from the heights measured from the bottom platen to the triaxial cell frame at four points (front, back, right, and left sides). This was done as a quality-control measure to ensure that the overall relative density across the sample was close to the target relative density. A 0.75% by-mass gelatin solution is then permeated through the specimen by applying an elevation head between the gelatin reservoir and bottom drainage lines of the specimen and allowing drainage through the top drainage lines (not more than 18 inches). About two specimen pore volumes were permeated through the specimen to ensure of the pore fluid. After the gelatin flushing of the specimen was complete, the drainage lines were all closed and an ice-bath was packed around the specimen, as shown in Figure 42. For this experiment, the ice bath was maintained over the height of the sample for a period of four hours, which was found to be adequate to solidify the specimen.

Figure 42: Ice bath placed around the compacted specimen for a period of four hours to set the gelatin.

After the four hours, the ice bath was removed and the specimen was removed from the split mold and taken out of the membrane, as shown in Figure 43, and cut into three approximately even-sized portions.

Figure 43: Specimen removed from the split mold and membrane following gelatin curing period.

The mass of these portions was taken and the volume determined using water displacement, as shown in Figure 44. These two measurements allow for the calculation of the density of each slice. It can be assumed that each of the slices is composed only of a mixture of gelatin and CCR material for the purposes of determining the relative density of each slice. The specific gravity of the gelatin solution was determined by permeating a portion of the solution through a piece of filter paper into a graduated cylinder and also placing this in an ice-bath for four hours, after which the mass and volume of the gelatin were measured and used to calculate the specific gravity at that temperature (ranged from 1.000 to 1.008). The specific gravity of the CCR material was determined according to ASTM D854, courtesy of Kevin Foster. Since the overall

density of each slice is known, and the density of both component materials is known, it is possible to calculate the volume of each component according to equations 12 and 13.

$$V_{s_slice} = \frac{\rho_{slice} \cdot V_{slice} \frac{G_G M_{slice}}{\rho_{slice}}}{G_S - G_G}$$
(12)

where V_{s_slice} = volume of solids of the specimen slice ρ_{slice} = density of the specimen slice V_{slice} = volume of the specimen slice G_G = specific gravity of the gelatin solution after ice-bath M_{slice} = mass of the specimen slice G_S = specific gravity of the CCR material

$$V_{g_slice} = \frac{M_{slice}}{\rho_{slice}} - V_{s_slice}$$
(13)

where V_{g_slice} = volume of gelatin of the specimen slice

Since it is assumed that the gelatin completely permeated the pore space of the sample, the volume of the gelatin is equal to the volume of voids in the slice and the void ratio can be calculated, which can then be used to calculate the relative density.

Once the densities of the slices has been determined, each slice is placed in its own container and allowed to dissolve (which will occur at room temperature), after which the Bromelain is added (a mass ratio of 1:10 of Bromelain to gelatin was found to be sufficient) and allowed to sit for two hours before placing it in an oven maintained at 110° C until it dried completely. ASTM D422-63 was followed in the particle-size analyses performed on each of the three slices for each sample, except for a few changes based on the properties of the CCR materials:

• The soil was not separated at the #10 sieve, since the material retained on the #10 sieve represented such a small portion of the sample. Additionally, in separating the samples at this sieve, there was the potential to lose specific particle sizes due to dust losses. Each of the hydrometer tests were separated on the #10 sieve following the test and the mass was adjusted accordingly for the hydrometer analysis calculations. This also eliminates the need to perform the calculation given in section 16 of the ASTM specification.

• A dry sample was used in each hydrometer test, since there would have been considerable time delays waiting for the specimen to dry at room-temperature (especially considering the presence of gelatin and bromelain in the specimens.

Figure 44: Each specimen slice volume was determined using water displacement. A 500 mL capacity beaker and a ruler incremented at $1/100^{\circ}$ were used to do this. The vertical distance between a 100 mL addition of water to the beaker and the equation for the volume of a cylinder was used to calculate the diameter of the beaker; with the diameter known, it was determined that volumes could be measured accurately to ± 1.4 cm³.

A dry sample of each of the slices could then be chosen to use in a hydrometer test (Bromelaingelatin crystals were avoided in order to ensure they did not affect the results) to determine the grain size distribution for soil passing the #200 sieve. This soil was then added back to the rest of the dried specimen slice and washed on a #200 sieve to be included in a grain-size analysis for the particles with diameters greater than 75 μ m.

Three different specimens were prepared, all at a target relative density of 70%. The first two specimens were deposited without a water bath within the split mold, while the last one was deposited with a water bath within the split mold. Table 11 makes a comparison of overall specimen slice densities and relative densities for the three specimens showing that, with or without a water bath inside the split mold, all three specimens had an increase in relative density down the height of the specimen. The top slice on the last specimen had not fully cured and as a result deformed some during the mass and volume measurements, undoubtedly resulting in the negative value of relative density. However, the bottom two slices of all three specimens are very consistent and the overall increase in relative density down the height of the specimen indicates that the densification technique that Vaid and Negussey (1988) cite as producing specimens of uniform density does not apply to SI CCR materials. Additionally, the very high values of relative density for all of the bottom slices indicate that the maximum and minimum void ratios determined for the material do not necessarily reflect the actual minimum and maximum void ratios; this could be the result of an inaccurate calculation of the specific gravity of the material, since that is a direct parameter for determining void ratio or an indication that the standards ASTM D4253 and D4254 are not appropriate methods for determining the minimum and maximum densities of CCR materials.

	Spe	cimen 1	Spe	cimen 2	Spe	cimen 3
	D _r	ρ (g/cm ³)	D _r	ρ (g/cm ³)	D _r	ρ (g/cm ³)
Top Slice	45%	1.63	27%	1.60	-13%	1.54
Middle Slice	93%	1.72	79%	1.69	76%	1.69
Bottom Slice	117%	1.78	113%	1.77	112%	1.77
Average	85%	1.71	73%	1.69	58%	1.67
From Dimensions	73%	-	70%	-	70%	-

 Table 11: Specimen relative density and density summary. The bottom two rows summarize relative density and density data for the entire specimen.

The gradation curves presented for each specimen in Figures 45 through 47 show little segregation of particle size, with the most notable trend being that the bottom slice did tend to

have a higher percentage of coarser particles within it; whether this phenomenon is solely the result of the placement method or the densification technique or whether both factors contribute is unclear and would require further study to determine. A comparison of the different slice gradations across specimens, presented in Figures 48 through 50, shows a very consistent gradation across the height of the sample between trials, indicating that this slight gradation difference is caused by a either the placement technique or the densification technique, though which of the one responsible cannot be stated with any certainty at this time. However, the effect of the placement technique and densification technique could be investigated easily through further testing. It is also interesting to note for specimen three, where a water-bath was used in the split-mold during slurry placement, that the gradations vary slightly more than for the two specimens, where a water-bath was not included. This may indicate that a water-bath allows sedimentation currents to form, while direct transfer without a water-bath minimizes the development of such currents. More reconstitutions would need to be made in order to perform meaningful statistical analyses on variation in gradation between samples made with and without water-baths to verify this claim. Lastly, Figure 51 plots all gradations on a single plot to make the extent of variation in the grain size distributions of the three specimens clear.

Specimen 1 Gradations vs. Height

Figure 45: Plot comparing grain-size distributions across the height of specimen one.

While the results of the three reconstitutions performed for this thesis provide some insight, a statement cannot be made about the suitability of the slurry deposition method for use with SI CCRs at this time. However, it can be said that the densification technique used in this investigation is unsuitable for SI CCR materials; if an alternative densification method could be developed, a simple investigation could be undertaken to determine if the slight particle segregation observed in this investigation was due to the vibratory compaction technique used, or if it was the result of the slurry deposition technique itself.

Specimen 2 Gradations vs. Height

Figure 46: Plot comparing grain-size distribution across the height of specimen two.

Figure 47: Plot comparing grain-size distribution across the height of specimen three.

Figure 48: Plot comparing grain-size distributions of the top slices of all three specimens.

Figure 49: Plot comparing grain-size distribution of the middle slices of all three specimens.

Figure 50: Plot comparing grain-size distribution for the bottom slices of all three specimens.

Figure 51: Comparison of all gradations for all three samples.

Examining Figure 51, it is obvious that a considerable amount of variability entered into gradation data with the portion of the graph that was determined using the hydrometer test. This may be the result of slight variations in temperature over the course of the test, regardless of the fact that the room temperature was thermostat-regulated. If temperature readings of the soil suspension had been take at each reading and used in calculating the values derived from Stokes' Law, this variability may have been reduced considerably. The maximum variability in the sieve analysis data for a given nominal diameter was about 10% by mass, while the maximum variability in the hydrometer analysis data for a given nominal diameter was about 25%.

Chapter 8

Conclusions

8.1 Engineering Characterization of CCRs

Geotechnical designs and analyses when working with CCRs are similar to those for natural soils in many respects. The physical and engineering properties of CCRs are what differentiate them from natural soils of similar grain size. Consequently, the single most important aspect of working with CCRs is determining their physical and engineering characteristics. As a result of current and past CCR disposal methods, determining variability in their properties across a given site is also important. As evidenced by the variability plots of the different engineering properties of CCRs, variability can vary greatly to very little within a specific site. However, since the coal source for a given site will inevitable vary, so will the engineering properties of the resulting ash. Because of the differences in properties of CCRs between given sites and from that of natural soils of similar grain size, a more thorough site investigation and laboratory testing schedule will almost always be necessary than for natural soils.

8.2 Dynamic Properties of CCRs

Being a mostly granular and non-plastic material, the characterization of the dynamic properties of CCRs is important to ensure that current and future CCR disposal areas are designed in order to withstand seismic events. Currently there is very little data on the dynamic properties of CCRs and the data that is available is usually from different countries, whose CCRs may not be similar enough in makeup to merit comparison with CCRs in the U. S.; more dynamic laboratory testing is required before such a conclusion can be made.

8.3 CCR Failure Modes and Monitoring Practices

The two main types of CCR disposal areas, surface impoundments and landfills, are very different in their construction and therefore are prone to different failure modes. As a result, monitoring practices should be tailored to the type of disposal area it applies to. Despite the fact that there is a lack of literature and precedence regarding monitoring of CCR disposal areas, their design tends to be similar enough to mine tailings dams that monitoring practices for tailings dams could easily be adapted and applied to CCR disposal areas. The flowcharts developed by Martin and Davies (2000) provide an excellent template that could be adapted to develop a site monitoring program for CCR disposal areas, especially for surface impoundments.

8.4 Slope Stability of CCRs

Slope stability analyses with CCRs are basically the same as for natural soils, except that there is usually an inherently higher degree of uncertainty in the CCR material. For that reason, analyses involving CCRs should have a degree of conservatism built into every step, unless there is evidence to indicate that such a measure is unnecessary. If the dikes containing surface impounded CCRs are built CCR materials, or other non-plastic soils that have the potential to have low hydraulic conductivity, then a sudden rise in the water table has a deleterious effect on the impoundment's performance. For this reason, if such conditions do exist, it is good practice to install drainage (if not already installed) to ensure a steady-state water table can be maintained.

8.5 Settlement Calculations for CCRs

Many researchers report compression and recompression indices for CCR materials. However, since CCRs generally do not have clearly log-linear values of compression and recompression indices, calculating settlements using consolidation theory can yield variable settlements, depending on different individuals' interpretation of standard consolidation tests.

The two methods for settlement of foundations in sand provide very similar results, underestimating settlement considerably. This is possibly the result of scale effects and differences in the mechanics of the materials (silt-sized particles that are the result of an industrial process rather than natural sands). In order to accurately say that none of these settlement calculation methods works well in CCR surface impounded materials, however, more test fills would need to be performed and analyzed in a similar fashion.

8.6 Slurry Deposition Technique Applied to SI CCRs

While it was not verified that the slurry deposition technique can be applied to SI CCR materials, the method shows promise based on the low variability of grain-size distribution across specimen height for the three specimens tested. However, a major drawback to this method is that the original densification method suggested by Keurbis and Vaid (1988), which was for sands and silty sands, does not appear to work for SI CCR material. Furthermore, more investigations would be required to determine whether the gradation differences observed in these three samples are due to particle migration during vibratory densification or to the actual deposition technique; if it is due to the former, a different densification method may make the slurry deposition method a very attractive reconstitution technique because it is relatively easy and has excellent repeatability, as evidenced in the results presented in Chapter 7. All spreadsheets used in specimen preparation and specimen analysis are provided in the appendix.

8.7 Recommendations for Further Study

As discussed in Chapter two, since CCR materials are the result of an industrial process and not a naturally occurring soil, there is a variety of factors that can affect their engineering properties. Not being a naturally occurring soil, there is a comparatively small body of literature available that reports engineering properties of CCRs. Furthermore, these properties will not necessarily be comparable between different regions. It is therefore necessary to continue research in CCRs, especially with regards to the following:

- Effects of placement condition on the engineering properties of CCRs (i.e. surface impounded vs. moist-compacted).
- Variability in engineering properties of CCRs between disposal sites and within disposal sites (and how to best quantify variability for different properties).
- Dynamic properties of CCRs, to ensure that seismic design of CCR disposal areas is adequate and determine if some disposal areas are higher risk in the event of an earthquake.
- CPT correlations to determine engineering characteristics of CCR materials in-situ.
- The effect of time on the engineering properties of CCRs.
- Determining the most appropriate method to determine c_v of CCR materials, in order to determine if disposal loading rates may be cause for engineering concern.
- "Smarter" technologies that can be adapted to aid in monitoring CCR disposal areas that would better identify gradual changes that may not be readily apparent to daily inspectors.
- Further testing on slurry deposition reconstituted SI CCR samples to analyze soil fabric (a large enough body of tests to analyze statistically). The same method as used in this thesis could be used or methods to determine shear wave velocity across the height of the sample could be used.

References

- ASTM. (2003). "Standard Test Methods for One-Dimensional Consolidation Properties of Soils Using Incremental Loading." *D2435-03*, West Conshohocken, Pa.
- ASTM. (2003). "Standard Test Method for Expansion Index of Soils." D4829-03, West Conshohocken, Pa.
- ASTM. (2003). "Standard Test Method for Shrinkage Factors of Soils by the Wax Method." *D4943-03*, West Conshohocken, Pa.
- ASTM. (1963). "Standard Test Method for Particle-Size Analysis of Soils." D422-63, West Conshohocken, Pa.
- Barton, N. and Choubey, V. (1977). "The Shear Strength of Rock Joints in Theory and Practice." *Rock Mechanics*, 10(1-2), 1-54.
- Carraro, J. A. H., Bandini, P., and Salgado, R. (2003). "Liquefaction Resistance of Clean and Nonplastic Silty Sands Based on Cone Penetration Resistance." *Journal of Geotechnical and Geoenvironmental Engineering*, 129(11), 965-976.
- Bera, A. K., Ghosh, Ambarish, and Ghosh, Amalendu. (2007). "Compaction Characteristics of Pond Ash." *J. Mater. Civil Eng.*, 19(4), 349-357.
- D'Appolonia, D. J., D'Appolonia, E., and Brisette, R. F. (1970). "Settlement of Spread footings on Sand." *Proceedings, Journal of Soil Mechanics and Foundation Division*, ASCE, Vol. 96, No. SM2, 754-761.
- Das, S. K., Yudhbir (2005). "Geotechnical Characterization of Some Indian Fly Ashes." J. Mater. Civil Eng., 17(5), 544-552.

- Dockter, B. A. and Jagiella, D. M. "Engineering and Environmental Specifications of State Agencies for Utilization and Disposal of Coal Combustion Products: Volume 2 – Environmental Regulations
- Emery, J. J., Liam Finn, W. D., and Lee, K. W. (1973). "Uniformity of Saturated Sand Specimens." *Evaluation of Relative Density and Its Role in Geotechnical Projects Involving Cohesionless Soils, ASTM STP 523*, American Society for Testing and Materials, 182-194.
- Energy Information Administration (2010). "Electricity Explained: Electricity in the United States," http://www.eia.gov/energyexplained (May 26, 2011).

Environmental Protection Agency (2011). "Coal Combustion Products," http://www.epa.gov/wastes/conserve/rrr/imr/ccps/ (May 26, 2011).

Federal Register. (1993). 58(No. 151: Aug. 9), 42466-42482.

Federal Register. (2010). 75(No. 118: June 21), 35128-35264.

- Gitari, M. W., Fatoba, O. O., Nyamihingura, A., Petrik L. F., Vadapalli, V. R. K., October, A., Dlamini, L., Gerike, G., and Mahlaba, J. S. (2009). "Chemical Weathering In A Dry Ash Dump: An Insight From Physiochemical and Mineralogical Analysis of Drilled Cores." *Proc. World of Coal Ash*, ACAA, Lexington, KY
- Indraratna, B., Nutalaya, P., Koo, K. S., and Kuganenthira, N. (1991). "Engineering behavior of a low carbon, pozzolanic fly ash and its potential as a construction fill." *Can. Geotech. J.*, 28(4), 542-555.
- Jakka, R. S., Ramana, G. V., and Datta, M. (2010a). "Shear Behaviour of Loose and Compacted Pond Ash." *Geotech. Geol. Eng.*, 28(6), 763-778.
- Jakka, R. S., Datta, M., Ramana, G. V. (2010b). "Liquefaction behavior of loose and compacted pond ash." *Soil Dynamics and Earthquake Engineering*, 30(7), 580-590.
- Joslin, J. G. (1958). "Ohio's Typical Moisture-Density Curves." *Proceedings, Symposium on Application of Soil Testing in Highway Design and Construction*, ASTM STP 239, 111-118.

- Kaniraj, S. R. and Gayathri, V. (2004). "Permeability and Consolidation Characteristics of Compacted Fly Ash." *J. Energy Eng.*, 130(1), 18-43.
- Keurbis, R. and Vaid, Y. P. (1988). "Sand Sample Preparation The Slurry Deposition Method." *Soils and Foundations*, 28(4), 107-118.
- Kim, B. and Prezzi, M. (2008). "Evaluation of the mechanical properties of class-F fly ash." *Waste Management*, 28(3), 649-659.
- Kolay, P. K. and Kismoor, T. (2009). "Geotechnical Characterization of Coal Ashes from Sarawak for Bulk Utilization." J. of Solid Waste Technology and Management, 35(2), 78-87.
- Kulhawy, F.H. and Mayne, P. W. (1990). Manual on Estimating Soil Properties for Foundation Design. Final Report (EL-6800) submitted to Electric Power Research Institute (EPRI), Palo Alto, CA.
- Ladd, R. S. (1978). "Preparing Test Specimens Using Undercompaction." Geotechnical Testing Journal, 1(1), 16-23.
- Madhyannapu, R. S., Madhav, M. R., Puppala, A. J., and Ghosh, A. "Compressibility and Collapsibility Characteristics of Sedimented Fly Ash Beds." *J. Mater. Civil Eng.*, 20(6), 401-409.
- Martin, J. P., Collins, R. A., Browning, J. S., and Biehl, F. J. (1990). "Properties and Use of Fly Ashes for Embankments." *Journal of Energy Engineering*, 116(2), 71-86.
- Martin, T.E. and M. P. Davies (2000). "Development and Review of Surveillance Programs for Tailings Dams," *Proceedings, Tailings Dams 2000*, Las Vegas, Association of State Dam Safety Officials (ASDSO), Lexington, KY, pp. 367-380.
- McLaren, R. J. and DiGioia, A. M. (1987). "The typical engineering properties of fly ash." *Geotechnical practice for waste disposal*, GSP 13, ASCE, 683-697.
- Mohanty, B., Patra, N. R., and Chandra, S. (2010). "Cyclic Triaxial Behavior of Pond Ash." *Proc. GeoFlorida, 2010*, Palm Beach, FL.

- Muhardi, Marto, A., Kassim, K. A., Makhtar, A. M., Wei, L. F., and Lim, Y. S. (2010). "Engineering Charactertistics of *Tanjung Bin* Coal Ash." *Electronic J. of Geotechnical Eng.*, 15(K), 1117-1129.
- Pandian, N. S. (2004). "Fly ash characterization with reference to geotechnical applications." *J. Indian Inst. Sci.* 84(6), 189-216.
- Prakash, K. and Sridharan, A. (2009). "Beneficial Properties of Coal Ashes and Effective Solid Waste Management." *Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management*, 13(4), 239-248.
- Prashanth, J. P., Sivapullaiah, P. V., and Sridharan, A. (1999). "Compaction behaviour of fly ashes." *Ground Improvement*, 3(2), 77-88.
- Rad, N. S. and Tumay M. T. (1987). "Factors Affecting Sand Specimen Preparation by Raining." *Geotechnical Testing Journal*, 10(1), 31-37.
- Raymond, S. (1962). "Pulverized fuel ash as embankment material." *ICE Proceedings*, 19(4), 515-536.
- Schmertmann, J. H. (1970). "Static cone to compute static settlement over sand." *Journal of Soil Mechanics and Foundations Division*, 96(3), 1011-1043.
- Schmertmann, J. H., Hartmann, J. P., and Brown, P. R. (1978). Improved strain influence factor diagrams." *Journal of the Geotechnical Engineering Division*, 104(GT8), 1131-1135.
- Scott, G. A., Engemoen, W. O., Gillette, D. R., L. W. Anderson, Liu, P., Feidler, W. R., Nuss, L. K., Trojanowski, J., England, J., Dise, K. M., and Schultz, R. W. (2010). *Dam Safety Risk Analysis Best Practices Training Manual*, Version 2.1, U.S. Department of the Interior Bureau of Reclamation, Denver, CO.
- Sherwood, P. T. (1995). "Power Station Wastes (pulverized fuel ash and furnace bottom ash)." *Alternative materials in road construction*, 1st ed., (5), 52-63.

- Singh, H. P., Maheshwari, B. K., Saran, S., and Paul, D. K. (2008). "Evaluation of Liquefaction Potential of Pond Ash." *Proc. World Conference on Earthquake Engineering*, Beijing, China.
- Sridharan, A., Pandian, N. S., and Srinivas, S. (2001). "Compaction behaviour of Indian coal ashes." *Ground Improvement*, 5(1), 13-22.
- Sridharan, A., Pandian, N. S., and Rao, P. S. (1998). "Shear strength characteristics of some Indian fly ashes." *Ground Improvement*, 2(3), 141-146.
- Tan, C.K. and Duncan, J. M. (1991). "Settlement of Footings on Sands-Accuracy and Reliability." *Proceedings, Geotechnical Engineering Congress,* ASCE, GSP 27, Vol. 2, 446-455.
- Trivedi, A. and Singh, S. (2004a). "Geotechnical and Geoenvironmental Properties of Power Plant Ash." J. Inst. Eng., 85(), 93-99.
- Trivedi, A. and Singh, S. (2004b). "Cone Resistance of Compacted Ash Fill." J. Test. Eval., 32(6), 1-9.
- Trivedi, A. and Sud, V. K. (2002). "Grain characteristics and engineering properties of coal ash." *Granular Matter*, 4(3), 93-101.
- Trivedi, A. and Sud, V. K. (2004). "Collapse Behavior of Coal Ash." J. Geot. Geoenv. Eng., 130(4), 403-415.
- Tu, W., Zand, B., Ajlouni, M. A., Butalia, T. S., and Wolfe, W. E. (2007). "The Consolidation Characteristics of Impounded Class F Fly Ash—A Case History." Proc. World of Coal Ash, ACAA, Covington, KY.
- United States Army Corps of Engineers (2003). *Slope Stability Engineer Manual*, EM 1110-2-1902.
- Vaid, Y. P. and Negussey, D. (1988). "Preparation of reconstituted sand specimens." Advanced Triaxial Testing of Soil and Rock, ASTM STP 977, American Society for Testing and Materials, 405-417.

Walton, W. H. and Butler, W. (2009). *Root Cause Analysis of TVA Kingston Dredge Pond Failure on December 22, 2008.* Engineering Report by AECOM.

Ward, C. R. and French, D. (2005). "Relation between Coal and Fly Ash Mineralogy, Based on Quantitative X-Ray Diffraction Methods." *Proc., World of Coal Ash*, ACAA, Lexington, KY.

Yoshimoto, N., Hyodo, M., Nakata, Y., Orense, R. P., and Murata, H. (2006). "Cyclic Shear Strength Characteristics of Granulated Coal Ash." *Proc., GeoShanghai 2006*, Shanghai, China.

Yudbhir and Honjo, Y. (1991). "Applications of Geotechnical Engineering to Environmental Control." *Proc., Ninth Asian Regional Conference on Soil Mechanics and Foundation Engineering*, Bangkok, Thailand.

Appendix A

Sample Preparation and Fabric Analysis Spreadsheets

<u>Samp</u>	le Dimensio	ons:			
Nata Ca					م، با: به ما م بيم
note: Sa	mple mold has	beveried top portio	n, so volume is calculat	ed as two separate	cylinders
	becher				
Н _{тс} =	0.72	inches	D _{TC} =	2.851	inches
H _{BC} =	5.465	inches	D _{BC} =	2.826	inches
T _{BS} =	0.112	inches	T _M =	0.012	inches
Т _{тр} =	1.229	inches	T _{EP} =	0.007	inches
Where	H _{TC} =	height of top cylind	er		
	H _{BC} =	height of bottom cy	linder		
	D _{TC} =	diameter of top cyli	inder		
	D _{BC} =	diameter of bottom	n cylinder		
	T _M =	latex membrane th	ickness		
	T _{BS} =	thickness of bottom	n porous stone		
	Т _{тР} =	thickness of top pla	ten		
	T _{FP} =	thickness of filter p	aper		
	Me	asurements of Sam	ole Height (Datum: cell	frame):	
	Reading Loc.	Bottom Platen (in)	Top of Top Platen (in)	Sample Height (in)	
	Front	12.247	4.724	6.182	
	Back	12.253	4.724	6.188	
	Right	12.249	4.724	6.184	
	Left	12.251	4.724	6.186	
			AVG	6 185	
			,,,,,,,	0.100	
	So target volur	me, V _{TAR} , is:			
	V _{TAR} =	38.13	in ³		
		624.9	cm ³		
	Minimum and	maximum void ratio	os and specific gravity of	f solids are:	
		0.65			
	e _{min} =	0.65			
	e _{max} =	1.2			
	G _S =	2.22			

<u>Mixing Tu</u>	be Din	nensio	ns C	Calculat	ion Sheet:			
D _r =	100%							
				Where	% V _T Voids =	percent of	f sample vo	olume
e =	0.65					occupied l	by void spa	ace
					% V_T Solids =	percent of	f sample vo	olume
% V _T Voids =	39%					occupied	by solids	
					V _{S_100%Dr} =	Volume of	f solids to	prepare a
% V _T Solids =	61%					sample at	100% relat	live density
					V _{V_0%Dr} =	Volume of	f voids at a	placement
Mass solids =	840.72	g						/0
		3			V _{TOT} =	Volume of	t soil to pre	epare a sample
V _{S_100%Dr} =	378.70	cm°				100% at ar	n initial rel	ative density
V _{V_0%Dr} =	454.44	cm ³				of 0%		,
V _{TOT} =	833.14	cm ³			V _{TUBE} =	Volume of	f specimer	n mixing tube
					D _{TUBE} =	Inner dian	neter of m	ixing tube
V _{TUBE} =	874.80	cm ³			H _{TUBE_req} =	Height of	mixing tub	e of specified
	53.384	in ³				diameter		
D _{TUBE} =	2.5	inches						
н –	10.88	inches						
"TUBE_req =	10.00	menes						

<u>Specime</u>	n 1 Prepara	ation Shee	<u>et</u> :			
D _{rTAR} =	70%		Location	Target H _{TP} (in)	H _{BP} (in)	H _s (in)
M _{ash} =	764.3	g	Front	4.724	12.247	6.168
w (%) =	29.2%	0	Back	4.724	12.253	6.174
M=	987.9	σ	Right	4 724	12.249	6 170
moist	567.5	δ	left	4 724	12 251	6 172
			Left	7.727	12.231	0.172
Location	Initial H _{TP} (in)	Final H _{TP} (in)	H _{BP} (in)	H _{sı} (in)	H _{SF} (in)	1
Front	N/A	4.732	12.247	N/A	6.160	
Back	N/A	4.7265	12.253	N/A	6.171	
Right	N/A	4.728	12.249	N/A	6.166	
Left	N/A	4.728	12.251	N/A	6.168	
Fines Lost:				G _{gelatin} :		
				gelutin		
Tare Name:	Cindy			Concentration :	0.75 % by mass	
Tare:	475.0	g		Tare:	126.8	g
Gross:	477.24	g		Gross:	224.5	g
Net:	2.2	g		Net:	97.7	g
				Volume:	97.7	cm ³
% Loss:	0.23%			G _{gelatin} :	1.000	
Approximat	e Placement D			Approxim	ate Densified D	
ripproximat		r•				r•
D _{COLLAR} =	2.822	in		V _{CYL2} =	4.315	in ³
H _{SI_AVG} =	N/A	in				
V _{CYL1} =	33.32	in ³		V _{TOT} =	37.64	in ³
V _{CYL2} =	4.47	in ³			616.74	cm ³
V _{CYL3} =	N/A	in ³		V _{SOLIDS} =	20.95	in ³
V _{TOT} =	N/A	in ³			343.29	cm ³
V _{SOLIDS} =	N/A	in ³		V _{VOIDS} =	16.69	in ³
V _{VOIDS} =	N/A	in ³			273.45	cm ³
e =	N/A			e =	0.80	

Note: Filter paper used between split-mold and membrane to see if vacuum was evenly distributed

Specimen 1 Fat	oric Tes	ting Sheet:							
	-								
Volume Calculation Ir	<u>ntormatio</u>								
D _{beaker} = 3.331	162 in								
$V_{1/100^{11}} = 0.08$	172 in ³								
1.4	t3 cm ³								
Top Slice									
				Sieve NO	Nominal diameter,	wt. retained	% retained	% nassing	
Mass = 278	67	Siava Analveis		#1	mm 4.75	(g) 0.6	0 3%	Sillicond of	
Weight = 0.61	14 Ib			#10	2	2.4	1.5%	98.5%	
Volume = 10.4	46 in ³	Tare Name:	Tare 1	#20	0.841	0.9	2.0%	98.0%	
171.	43 cm ³	Tare Mass (g):	329.2	#30	0.595	0.3	2.1%	97.9%	
Density = 0.05	59 lb/in	Tare + Dry Soil Mass (g):	525.1	#40	0.425	0.6	2.5%	97.5%	
1.6	3 g/cm	Tare + Dry Soil Mass After Washing (g):	360.3	#60	0.25	4.1	4.5%	95.5%	
				#100	0.15	11.2	10.3%	89.7%	
Mass _{Ovendry} = 195.	87 g			#200	0.075	26.8	23.9%	76.1%	
Mass _{Ovenwash} = 46.	හ 6		Subtract this from Mass _{Ovenwash}	=> Pan		1.9	100.0%	0.0%	
%Pass _{#200} = 765	%								
					% lost:	0.00%			
						,			
				Elapsed time (min)	Reading	Comp. Reading	L (cm) (ASTM table 2)	P (ASTM eqn. 2)	D (mm) (ASTM eqn. 4)
		Hydrometer Analysis		1	37	31.4	10.2	70%	0.0617
		Time readings begin:	6/14/2012 8:23	2	32	26.4	11.0	29%	0.0453
		Hydrometer Type:	152H	4	27	21.4	11.9	48%	0.0332
		Composite Correction:	5.6	∞	23	17.4	12.5	39%	0.0241
		Dry mass of soil tested (g):	50.0	15	19.5	13.9	13.1	31%	0.0180
		Mretained on #10 seive (g):	1.2	30	16.3	10.7	13.6	24%	0.0130
		Dry mass of soil past #10 (g):	48.8	60	13	7.4	14.2	17%	0.0094
		W (dry mass of soil represented) (g):	49.6	120	10.5	4.9	14.6	11%	0.0067
		Temperature (° F):	69	250	6	3.4	14.8	8%	0.0047
		G_s correction factor (ASTM D 422, Table 1); Interpolated!:	1.11	500	7.3	1.7	15.1	4%	0.0034
		K (ASTM eq. 4, based on temp and G_s):	0.0193	1440	7.3	1.7	15.1	4%	0.0020
	_	% Passing #10 Sieve:	98.5%						

Middle Slice									
				Sieve No.	Nominal diameter, mm	wt. retained (g)	% retained	% passing	
Mass =	327.5	80	Sieve Analysis	#4	4.75	0	0.0%	100.0%	
Weight =	0.722	qI		#10	2	0	0.0%	100.0%	
Volume =	11.59	in ³	Tare Name: Tare 2	#20	0.841	0.2	0.1%	99.9%	
	190.00	cm³	Tare Mass (g): 332.6	#30	0.595	0.4	0.3%	99.7%	
Density =	0.062	lb/in ³	Tare + Dry Soil Mass (g): 570.7	#40	0.425	1	0.7%	99.3%	
	1.72	g/cm ³	Tare + Dry Soil Mass After Washing (g): 386.6	#60	0.25	8.3	4.2%	95.8%	
				#100	0.15	19	12.1%	87.9%	
Mass _{Ovendry} =	238.12	ы		#200	0.075	36	27.3%	72.7%	
Mass _{Ovenwash} =	64.9	50	Subtract this from I	Mass _{Ovenwash} => Pan		2.5	100.0%	0.0%	
%Pass _{#200} =	73%								
					% lost:	0.00%			
				Elapsed tim	D D D D D	Comp.	L (cm)	P (ASTM	D (mm)
				(min)	Keading	Reading	(ASTM table 2)	eqn. 2)	(ASTM eqn. 4)
			Hydrometer Analysis	1	36.5	30.9	10.3	68%	0.0619
			Time readings begin: 152H	2	33.5	27.9	10.8	62%	0.0448
			Hydrometer Type: 6/14/2012 10:05	4	28.5	22.9	11.6	51%	0.0329
			Composite Correction: 5.6	∞	23	17.4	12.5	38%	0.0241
			Dry mass of soil tested (g): 50	15	19	13.4	13.2	30%	0.0181
			Mretained on #10 seive (g): 0	30	14.5	8.9	13.9	20%	0.0131
			Dry mass of soil past #10 (g): 50	60	12	6.4	14.3	14%	0.0094
			W (dry mass of soil represented) (g): 50	120	6	3.4	14.8	8%	0.0068
			Temperature (° F): 69	250	8.5	2.9	14.9	%9	0.0047
			G_s correction factor (ASTM D 422, Table 1); Interpolated!: 1.11	200	7.5	1.9	15.1	4%	0.0033
			K (ASTM eq. 4, based on temp and G_s): 0.0193	1440	7.5	1.9	15.1	4%	0.0020
			% Passing #10 Sieve: 100.0%						

:									
Bottom Slice									
				Sieve No.	Nominal diameter, mm	wt. retained (g)	% retained	% passing	
			Sieve Analysis	#4	4.75	0.6	0.2%	99.8%	
Mass =	428.1	ß		#10	2	6.5	2.2%	97.8%	
Weight=	0.944	q	Tare Name: Tare 3	#20	0.841	10.2	5.3%	94.7%	
Volume =	14.65	in ³	Tare Mass (g): 333.7	#30	0.595	4.6	6.7%	93.3%	
	240.00	cm	Tare + Dry Soil Mass (g): 662.1	#40	0.425	5.6	8.4%	91.6%	
Density =	0.064	lb/in ³	Tare + Dry Soil Mass After Washing (g): 436.2	#60	0.25	16.8	13.5%	86.5%	
	1.78	g/cm ³		#100	0.15	25.2	21.2%	78.8%	
		;		#200	0.075	43.1	34.3%	65.7%	
Mass _{Ovendry} =	328.44	ы	Subtract this from Mas	ss _{Ovenwash} => Pan		4.5	35.7%	64.3%	
Mass _{Ovenwash} =	113.6	ы							
%Pass#200 =	65%				% lost:	0:30%			
				Elapsed time	Docioca	Comp.	L (cm)	P (ASTM	D (mm)
				(min)	2 Neaulig	Reading	(ASTM table 2)	eqn. 2)	(ASTM eqn. 4)
			Hydrometer Analysis	L.	35	29.4	10.6	64%	0.0627
			Time readings begin: 152H	2	32	26.4	11.0	57%	0.0453
			Hydrometer Type: 6/14/2012 11:43	4	27.5	21.9	11.8	47%	0.0331
			Composite Correction: 5.6	8	21.3	15.7	12.8	34%	0.0244
			Dry mass of soil tested (g): 50	15	17	11.4	13.5	25%	0.0183
			Mretained on #10 seive (g): 0.02	30	12.6	7	14.2	15%	0.0133
			Dry mass of soil past #10(g): 49.98	60	9.3	3.7	14.8	8%	0.0096
			W (dry mass of soil represented) (g): 51.1	120	8.5	2.9	14.9	6%	0.0068
			Temperature (° F): 69	250	7	1.4	15.1	3%	0.0047
			G_s correction factor (ASTM D 422, Table 1); Interpolated!: 1.11	500	6.3	0.7	15.3	2%	0.0034
			K (ASTM eq. 4, based on temp and G_s): 0.0193	1440	6.3	0.7	15.3	2%	0.0020
			% Passing #10 Sieve: 97.8%						

	Electronic	Filing:	Received,	Clerk's	Office	08/27/	2020
Nicholas A.	Lacour		Appe	ndix			

						0.95	45%			0.69	93%			0.56	117%	0.73	85%	
						e _{S1} =	$D_{rS1} =$			e _{s2} =	$D_{rS2} =$			e _{S3} =	D _{rs3} =	e _{avg} =	D _{r_avg} =	
						cm ³	cm ³			cm ³	cm ³			cm ³	cm ³		cm ³	
						87.90	83.53			112.71	77.29			154.17	85.83		601.43	
						V _{S_S1} =	V _{G_S1} =			V _{5_52} =	V _{G_52} =			V _{5_53} =	V _{G_53} =		$V_{TOT} =$	
					Slice 1:				Slice 2:				Slice 3:					
		vidual Slices:			cm ³	cm ³	cm ³	۵۵	۵۵	۵۵	g/cm ³	g/cm ³	g/cm ³					
		ensity of Indi			171.43	190.00	240.00	278.7	327.5	428.1	1.63	1.72	1.78	2.22	1.000		787.6017474	
		necks on Relative D		:suwor	$V_{s1} =$	V _{s2} =	V _{s3} =	m _{s1} =	m _{s2} =	m _{s3} =	$p_{S1} =$	P ₅₂ =	P _{S3} =	G _s =	G _{gel} =		M _{DRY_SAMPLE} =	
		G		K														
					~	-3	'in ³	cm ³				3			~			
	32.43 g		34.3 g	280 Ib	5.70 in ³)1.43 cm	062 lb/	72 g/c			52.1 g	l3.29 cm	0.95 in ³	8.14 cm	5.75 in ³	.75		5%
nary	^{tvendry} = 76		Mass = 10	/eight = 2.	olume = 3t	90	ensity = 0.	-		D_FINES = 2	SAMPLE = 76	V _{soups} = 34	2(V _{volDs} = 25	Ħ	e = 0		D, = 81

<u>Specime</u>	n 2 Prepara	ation Shee	et:			
D _{rTAR} =	70%		Location	Target H _{TP} (in)	H _{BP} (in)	H _s (in)
M _{ash} =	764.3	g	Front	4.724	12.247	6.168
w (%) =	29.2%		Back	4.724	12.253	6.174
M _{moist} =	987.8	g	Right	4.724	12.249	6.170
moist		0	Left	4.724	12.251	6.172
Location	Initial H _{TP} (in)	Final H _{TP} (in)	H _{BP} (in)	H _{sı} (in)	H _{SF} (in)	
Front	4.245	4.729	12.247	6.648	6.163	
Back	4.245	4.728	12.253	6.653	6.170	
Right	4.245	4.731	12.249	6.649	6.163	
Left	4.246	4.725	12.251	6.650	6.171	
Fines Lost:				G _{gelatin} :		
- N					0.75.0/1	
Tare Name:	Cindy	-		Concentration :	0.75% by mass	
Tare:	475.0	g		Tare:	126.8	g
Gross:	4/6.3	g		Gross:	224.8	g
Net.	1.5	g		Volumo:	98	g 3
9/ 1000	0 1 2 9/			volume.	90 1 000	cm
% LUSS:	0.13%			G _{gelatin} .	1.000	
Approvimate	o Diacomont D			Approvimate De	ncified D :	
Арргохппан		-			lisilieu D _r .	
D _{COLLAR} =	2.825			V _{CYL2} =	4.36	in ³
H _{IS AVG} =	0.465					
– V _{CYL1} =	33.66	in ³		V _{TOT} =	38.02	in ³
V _{CY12} =	4.52	in ³			622.98	cm ³
V _{CV13} =	2.86	in ³		V _{SOUDS} =	20.97	in ³
V _{TOT} =	41.04	in ³		50105	343.69	cm ³
V _{SOLIDS} =	20.97	in ³		V _{VOIDS} =	17.04	in ³
V _{VOIDS} =	20.07	in ³			279.29	cm ³
e =	0.96			e =	0.81	
D _r =	44%			D _r =	70.43%	

	- L	ŀ							
Specimen 2	Fabric		ING SNEET:						
/olume Calculat	ion Infori	mation							
D _{beaker} =	3.33162	<u>.</u>							
$V_{1/100"} =$	0.087	in³							
	1.43	e							
Ton Slice									
				Sieve No	Nominal diameter,	wt. retained (g)	% retained	% passing	
Mass =	237	60	Sieve Analysis	##	4.75	1.3	0.8%	99.2%	
Weight =	0.522	q		#10	2	2.4	2.2%	97.8%	
Volume =	9.07	in.3	Tare Name: Tare 4	#20	0.841	0.6	2.6%	97.4%	
	148.57	cm³	Tare Mass (g): 329.8	#30	0.595	0.3	2.8%	97.2%	
Density =	0.058	lb/in ³	Tare + Dry Soil Mass (g): 495.6	#40	0.425	0.4	3.0%	97.0%	
	1.60	g/cm ³	Tare + Dry Soil Mass After Washing (g): 371.9	#	0.25	3.1	4.9%	95.1%	
				#100	0.15	9.7	10.7%	89.3%	
Mass _{Ovendry} =	165.8	50		#200	0.075	23.1	24.7%	75.3%	
Mass _{Ovenwash} =	41.1	60	Subtract this from	m Mass _{Ovenwash} => Pan		1	100.0%	0.0%	
%Pass _{#200} =	75%								
					% lost:	0.12%			
				Elapsed tin (min)	ne Reading	Comp. Reading	L (cm) (ASTM table	P (ASTM egn. 2)	D (mm) (ASTM egn. 4)
			Hydrometer Analysis	-	36.5	31.5	10.3	70%	0.0624
			Time readings begin: 6/15/2012 17:13	2	34	5	10.7	64%	0.0450
			Hydrometer Type: 152H	4	28	23	11.7	51%	0.0332
			Composite Correction: 5	8	25.2	20.2	12.2	45%	0.0240
			Dry mass of soil tested (g): 50.0	15	18.5	13.5	13.3	30%	0.0183
			Mretained on #10 seive (g): 1.2	30	15	10	13.8	22%	0.0132
			Dry mass of soil past #10 (g): 48.8	60	11.6	9.9	14.4	15%	0.0095
			W (dry mass of soil represented) (g): 49.9	120	9.5	4.5	14.7	10%	0.0068
			Temperature (° F): 68	250	7.6	2.6	15.0	%9	0.0048
			G_s correction factor (ASTM D 422, Table 1); Interpolated!: 1.11	200	7.5	2.5	15.1	%9	0.0034
			K (ASTM eq. 4, based on temp and G_s): 0.0194	1440	9	1	15.3	2%	0.0020
			% Passing #10 Sieve: 97.8%						

Middle Slice											
					Sieve No.	Nominal diameter, mm	wt. retained (g)	% retained	% passing		
Mass =	367.1	50	Sieve Analysis		#4	4.75	0	0.0%	100.0%		
Weight =	0.809	q			#10	2	0	0.0%	100.0%		
Volume =	13.25		Tare Name: Tare 6	9	#20	0.841	0.2	0.1%	6.9%		
	217.14	cm³	Tare Mass (g): 329.8	8	#30	0.595	0.4	0.2%	99.8%		
Density =	0.061	lb/in ³	Tare + Dry Soil Mass (g): 595.8	8	#40	0.425	1.1	0.6%	99.4%		
	1.69	g/cm ³	Tare + Dry Soil Mass After Washing (g): 400.0	0	09#	0.25	9.6	4.2%	95.8%		
					#100	0.15	20.2	11.8%	88.2%		
Mass _{Ovendry} =	265.97	50			#200	0.075	37.5	25.9%	74.1%		
Mass _{Ovenwash} =	69	ы	Subtract thi	his from Mass _{Ovenwash} =>	Pan		1.7	100.0%	0.0%		
%Pass _{#200} =	74%										
						% lost:	0.00%				
					Elapsed time	Dociding	Comp.	L (cm)	P (ASTM	D (mm)	
					(min)	кединв	Reading	(ASTM table	eqn. 2)	(ASTM eqn. 4)	
			Hydrometer Analysis		1	35	30	10.6	%99	0.0631	
			Time readings begin: 152H	<u>т</u>	2	30	25	11.4	55%	0.0463	
			Hydrometer Type: 6/15/2012 1 ⁴	14:54	4	25.3	20.3	12.1	45%	0.0339	
			Composite Correction: 5		∞	20.5	15.5	12.9	34%	0.0247	
			Dry mass of soil tested (g): 50		15	15.3	10.3	13.8	23%	0.0186	
			Mretained on #10 serve (g): 0		30	12	7	14.3	15%	0.0134	
			Dry mass of soil past #10 (g): 50		09	10	ъ	14.7	11%	0.0096	
			W (dry mass of soil represented) (g): 50		120	6.3	1.3	15.3	3%	0.0069	
			Temperature (° F): 68		250	5.6	0.6	15.4	1%	0.0048	
			G_s correction factor (ASTM D 422, Table 1); Interpolated!: 1.11		500	5.3	0.3	15.4	1%	0.0034	
			K (ASTM eq. 4, based on temp and G_s): 0.0194	34	1440	ß	0	15.5	%0	0.0020	
			% Passing #10 Sieve: 100.0%	%							

Bottom Slice										
					Sieve No.	Nominal diameter, mm	wt. retained (g)	% retained	% passing	
Mass =	435.44	50	Sieve Analysis		#	4.75	1.1	0.3%	99.7%	
Weight =	0.960	qI			#10	2	6.5	2.3%	97.7%	
volume =	14.99	in³	Tare Name: Tare	'e 5	#20	0.841	10.2	5.4%	94.6%	
	245.71	cm³	Tare Mass (g): 335	5.8	#30	0.595	4.6	6.8%	93.2%	
Density =	0.064	lb/in ³	Tare + Dry Soil Mass (g): 666	6.8	#40	0.425	5.3	8.4%	91.6%	
	1.77	g/cm³	Tare + Dry Soil Mass After Washing (g): 444	4.1	09#	0.25	16.3	13.3%	86.7%	
					#100	0.15	23	20.2%	79.8%	
Mass _{Ovendry} =	331	ы			#200	0.075	39.4	32.1%	67.9%	
Mass _{Ovenwash} =	106.2	۵۵	Subtract t	this from Mass _{Ovenwash} =>	Pan		2.7	100.0%	0.0%	
%Pass _{#200} =	68%									
						% lost:	-0.06%			
					Elapsed time	Dead	Comp.	r (cm)	P (ASTM	D (mm)
					(min)	Neduling	Reading	(ASTM table	eqn. 2)	(ASTM eqn. 4)
			Hydrometer Analysis		1	35	30	10.6	65%	0.0631
			Time readings begin: 152	2H	2	28.3	23.3	11.7	50%	0.0469
			Hydrometer Type: 6/15/2012	2 15:19	4	24.3	19.3	12.3	42%	0.0341
			Composite Correction: 5	2	8	20.5	15.5	12.9	33%	0.0247
			Dry mass of soil tested (g): 50	0	15	16	11	13.7	24%	0.0186
			Mretained on #10 seive (g): 0	0	30	12	7	14.3	15%	0.0134
			Dry mass of soil past #10 (g): 50	0	60	8	ε	15.0	6%	0.0097
			W (dry mass of soil represented) (g): 51.	1.2	120	6.3	1.3	15.3	3%	0.0069
			Temperature (° F): 68	8	250	5.6	0.6	15.4	1%	0.0048
			G_s correction factor (ASTM D 422, Table 1); InterpolatedI: 1.1	11	500	5.3	0.3	15.4	1%	0.0034
			K (ASTM eq. 4, based on temp and G_s): 0.01	194	1440	2	0	15.5	%0	0.0020
			% Passing #10 Sieve: 97.7	.7%						

Electronic Filing: Received, Clerk's Office 08/27/2020 Nicholas A. Lacour Appendix

Summary							
$\Sigma Mass_{Ovendry} =$	762.77	50					
			Checks on Relative Density of Individua	al Slices:			
Mass =	1039.5	60					
Weight =	2.292	qI	Knowns:				
Volume =	37.31	in ³	$V_{s1} = 148.57$ cm ³	Slice 1:			
	611.43	cm³	$V_{s2} = 217.14$ cm ³		V _{S_S1} = 72.4	t8 cm ³	e _{s1} = 1.05
Density =	0.061	lb/in ³	$V_{s3} = 245.71$ cm ³		V _{G_S1} = 76.0	99 cm ³	$D_{r_{5,1}} = 27\%$
	1.70	g/cm ³	m _{s1} = 237.0 g				
			m _{s2} = 367.1 g	Slice 2:			
M _{DRIED_FINES} =	1.3	۵۵	m _{s3} = 435.4 g		$V_{S_{-52}} = 122.$	88 cm ³	e _{s2} = 0.77
M _{DRY_SAMPLE} =	763.0	50	p _{S1} = 1.60 g/cm	³	V _{G_52} = 94.2	16 cm ³	D _{rs2} = 79%
V _{souds} =	343.69	cm³	p ₅₂ = 1.69 g/cm	°-			
	20.97	in ³	p _{s3} = 1.77 g/cm	າ ³ Slice 3:			
V _{voids} =	267.74	cm³	G _s = 2.22		V _{s_s3} = 155.	51 cm ³	e _{s3} = 0.58
	16.34	in ³	G _{gel} = 1.000		V _{G_S3} = 90.2	to cm ³	$D_{r_{53}} = 113\%$
e I	0.78						e _{avg} = 0.80
			M _{DRY_SAMPLE} = 778.9496685		$V_{TOT} = 611.$	43 cm ³	$D_{r_{avg}} = 73\%$
D, =	76.5%						

<u>Specime</u>	n 3 Prepara	ation Shee	e <u>t</u> :			
D _{rTAR} =	70%		Location	Target H _{TP} (in)	H _{BP} (in)	H _s (in)
M _{ash} =	764.3	g	Front	4.724	12.247	6.168
w (%) =	29.2%		Back	4.724	12.253	6.174
M _{moist} =	987.8	g	Right	4.724	12.249	6.170
			Left	4.724	12.251	6.172
Location	Initial H _{TP} (in)	Final H _{TP} (in)	H _{BP} (in)	H _{sı} (in)	H _{SF} (in)	
Front	4.447	4.735	12.247	6.446	6.157	
Back	4.449	4.734	12.253	6.449	6.164	
Right	4.451	4.734	12.249	6.443	6.160	
Left	4.446	4.735	12.251	6.450	6.161	
Fines Lost:				G _{gelatin} :		
- N					0.750/1	
Tare Name:	Cindy	-		Concentration:	0.75% by mass	
Tare:	475.0	g		Tare:	126.8	g
Gross:	4/7.3	g		Gross:	225.55	g
Net.	2.5	B		Volume:	90.75	8 ama ³
% Locc:	0.220/			volume:	1 009	cm
% LUSS.	0.25%			G _{gelatin} .	1.008	
Approvimate	a Placement D	•		Approvimate De	nsified D :	
Аррголіпац					ensineu D _r .	
D _{COLLAR} =	2.825			V _{CYL2} =	4.32	in ³
H _{IS AVG} =	0.262	in				
V _{CYL1} =	33.66	in ³		V _{TOT} =	37.98	in ³
$V_{CV12} =$	4.52	in ³			622.34	cm ³
V _{CV12} =	1.61	in ³		V _{SOUDS} =	20.95	in ³
$V_{TOT} =$	39.79	in ³		- 301103	343.24	cm ³
V _{SOUDS} =	20.95	in ³		V _{VOIDS} =	17.03	in ³
V	18.84	in ³		VOIDS	279.10	cm ³
e =	0.90			e =	0.81	
D _r =	55%			D _r =	70.34%	
				· · ·		

pecimen 3 Fa	bric Tes	ting Sheet:								
olume Calculation	Informatio	÷								
D _{beaker} = 3.35	3162 in									
$V_{1/100"} = 0.0$	387 in ³									
÷	43 cm ³									
Top Slice										
					Sieve N	o. Nominal diam€ mm	eter, wt. retained (g)	% retained	% passing	
		Sieve Analysis			#4	4.75	1.2	0.7%	99.3%	
Mass = 25	7.6 g				#10	2	1.8	1.7%	98.3%	
Weight = 0.5	568 Ib		Tare Name:	Tare 1	#20	0.841	0.8	2.2%	97.8%	
Volume = 10	.20 in ³		Tare Mass (g):	329.2	#30	0.595	0.3	2.3%	97.7%	
167	7.14 cm ³	Tare	e + Dry Soil Mass (g):	504.0	#40	0.425	0.4	2.6%	97.4%	
Density = 0.0)56 lb/ir	3 Tare + Dry Soil Mas	ss After Washing (g):	374.0	#60	0.25	2.9	4.2%	95.8%	
ij	54 g/cm	ε.			#100	0.15	9.4	9.6%	90.4%	
					#200	0.075	26.1	24.5%	75.5%	
Mass _{Ovendry} = 17.	4.8 g		.,	Subtract this from Mass _o ,	venwash => Pan		2.6	100.0%	0.0%	
Mass _{Ovenwash} = 42	2.7 g									
%Pass _{#200} = 76	2%					% lost:	-0.11%			
					Elapsed t (min)	ime Reading	Comp. Reading	L (cm) (ASTM table 2)	P (ASTM eqn. 2)	D (mm) (ASTM egn. 4)
		Hydrometer Analysis			1	39	33.7	9.6	75%	0.0597
		Ш	ime readings begin: 6	5/16/2012 12:57	2	34	28.7	10.7	64%	0.0439
			Hydrometer Type:	152H	4	31	25.7	11.2	57%	0.0317
		CO	omposite Correction:	5.3	∞	26.3	21	12.0	47%	0.0232
		Dry ma	ass of soil tested (g):	50.0	15	20.5	15.2	12.9	34%	0.0176
			Mretained on #10 seive (g):	1.2	30	18.5	13.2	13.3	29%	0.0126
		Dry mass	s of soil past #10 (g):	48.8	99	13	7.7	14.2	17%	0.0092
		W (dry mass of so	oil represented) (g):	49.7	120	10	4.7	14.7	10%	0.0066
			Temperature (° F):	71.6	250	6	3.7	14.8	8%	0.0046
		G_s correction factor (ASTM D 422, Tab	ole 1); Interpolated!:	1.11	500	8	2.7	15.0	%9	0.0033
		K (ASTM eq. 4, base	ed on temp and G_s):	0.0190	1440	5.3	0	15.4	%0	0.0020
		5.	% Passing #10 Sieve:	98.3%						
	Electronic Filing: Re	ceived, Clerk's Of	fice 08/27/2020							
-------------	-----------------------	--------------------	-----------------							
Nicholas A.	Lacour	Appendix								

					-				
Middle Slice									
				Sieve No.	Nominal diameter, mm	wt. retained (g)	% retained	% passing	
			Sieve Analysis	##	4.75	0.4	0.2%	99.8%	
Mass =	349.9	ы		#10	2	1.2	0.6%	99.4%	
Weight =	0.771	q	Tare Name: Tare 2	#20	0.841	1.3	1.1%	98.9%	
Volume =	12.64	in³	Tare Mass (g): 332.5	#30	0.595	0.9	1.5%	98.5%	
	207.14	cm³	Tare + Dry Soil Mass (g): 588.8	#40	0.425	1.5	2.1%	97.9%	
Density =	0.061	lb/in ³	Tare + Dry Soil Mass After Washing (g): 406.4	09#	0.25	8.6	5.4%	94.6%	
	1.69	g/cm ³		#100	0.15	18.6	12.7%	87.3%	
				#200	0.075	38.4	27.7%	72.3%	
Mass _{Ovendry} =	256.3	50	Subtract this from N	Mass _{Ovenwash} => Pan		2.9	100.0%	0.0%	
Mass _{Ovenwash} =	71.3	50							
%Pass _{#200} =	72%				% lost:	0.16%			
				Elapsed time (min)	eReading	Comp. Reading	L (cm) (ASTM table 2)	P (ASTM eqn. 2)	D (mm) (ASTM ean. 4)
			Hydrometer Analysis		34	28.7	10.7	63%	0.0621
			Time readings begin: 152H	2	28.3	23	11.7	51%	0.0458
			Hydrometer Type: 6/16/2012 13:30	4	24.6	19.3	12.3	42%	0.0332
			Composite Correction: 5.3	ø	20	14.7	13.0	32%	0.0242
			Dry mass of soil tested (g): 50	15	17	11.7	13.5	26%	0.0180
			Mretained on #10 serve (g): 0	30	13.2	7.9	14.1	17%	0.0130
			Dry mass of soil past #10 (g): 50	60	∞	2.7	15.0	%9	0.0095
			W (dry mass of soil represented) (g): 50.31409501	120	6.6	1.3	15.2	3%	0.0068
			Temperature (° F): 71.6	250	9	0.7	15.3	2%	0.0047
			G_s correction factor (ASTM D 422, Table 1); InterpolatedI: 1.11	200	5.3	0	15.4	%0	0.0033
			K (ASTM eq. 4, based on temp and G_s): 0.0190	1440	5.3	0	15.4	%0	0.0020
			% Passing #10 Sieve: 99.4%						

	Electronic	Filing: Receiv	ved, Cl	erk's	Office	08/27/2	2020
Nicholas A.	Lacour	_	Appendix	<i>.</i>			

Bottom Slice									
				Sievel	Vo. Nominal diameter, mm	wt. retained (g)	% retained	% passing	
Mass =	410.1	50	Sieve Analysis	#4	4.75	1	0.3%	99.7%	
Veight =	0.904	q		#10	2	4.4	1.7%	98.3%	
/olume =	14.12		Tare Name: Tare 3	#20	0.841	6.6	3.8%	96.2%	
	231.43	cm³	Tare Mass (g): 333.6	#30	0.595	m	4.8%	95.2%	
Density =	0.064	lb/in ³	Tare + Dry Soil Mass (g): 646.3	#40	0.425	4.7	6.3%	93.7%	
	1.77	g/cm ³	Tare + Dry Soil Mass After Washing (g): 441.7	#60	0.25	16.1	11.4%	88.6%	
				#10(0.15	24.6	19.3%	80.7%	
Mass _{Ovendry} =	312.7	50		#20(0.075	42.1	32.8%	67.2%	
Mass _{Ovenwash} =	103.1	500	Subtract this from N	Mass _{Overwash} => Pan		5.4	100.0%	0.0%	
%Pass _{#200} =	67%								
					% lost:	0.19%			
					im/ of	Comp.	L (cm)	P (ASTM	D (mm) / ACTNA
						Reading	(ASTINI LAULE 2)	eqn. 2)	eqn. 4)
			Hydrometer Analysis	1	30	24.7	11.4	54%	0.0640
			Time readings begin: 152H	2	26.5	21.2	11.9	46%	0.0463
			Hydrometer Type: 6/16/2012 14:03	4	20.5	15.2	12.9	33%	0.0341
			Composite Correction: 5.3	8	18.3	13	13.3	28%	0.0244
			Dry mass of soil tested (g): 50	15	15.3	10	13.8	22%	0.0182
			Mretained on #10 seive (g): 0.02	30	11.3	9	14.4	13%	0.0132
			Dry mass of soil past #10 (g): 49.98	60	8.5	3.2	14.9	7%	0.0094
			W (dry mass of soil represented) (g): 50.9	120	8.4	3.1	14.9	7%	0.0067
			Temperature (° F): 71.6	250	9	0.7	15.3	2%	0.0047
			G_s correction factor (ASTM D 422, Table 1); InterpolatedI: 1.11	500	5.6	0.3	15.4	1%	0.0033
				144(5.3	0	15.4	%0	0.0020
			K (ASTM eq. 4, based on temp and G_s): 0.0190						
			% Passing #10 Sieve: 98.3%						

Electronic Filing: Received, Clerk's Office 08/27/2020 Nicholas A. Lacour Appendix

						72	%			78	%			65	2%		80	%		
						= 1.2	-15			= 0.7	= 76			= 0.5	= 11		= 0.5	=		
						e_{S1}	D_{rS1}			ess	D _{rS2}			esa	D _{rca}		e _{avg}	D _{r_avg}		
						cm ³	cm³			cm ³	cm³			cm ³	cm³			cm³		
						.56 0	.58			5.40	.74			5.92	.51			5.71		
						= 73	= 93			= 11(=			= 145	= 85			=		
						V _{S_S1} :	V _{G_S1} :			V _{5_52}	V _{G_52} :			V _{S_53}	V _{6 53}			VTOT		
					е 1:				2: 2:				е 3:							
		es:			Slic				Slic				Slic			_				
		dual Slic			m³	m³	m³				/cm³	/cm³	/cm³							
		of Indivi			4 cr	4 CI	13 CI	6	9	1 8	1	9	00		80			745.65		
		Density			167.1	207.1	231.4	257.	349.	410.	1.54	1.69	1.77	2.23	1.00					
		Relative			$V_{s1} =$	V _{s2} =	V _{s3} =	$m_{s1} =$	m _{s2} =	m _{s3} =	$\rho_{S1} =$	ρ _{S2} =	p _{S3} =	ے ق	G _{ael} =			AMPLE =		
		ecks on B		wns:														M _{DRY_S}		
		Che		Kno																
																				were
																				o slices
					~	°_	/in ³	cm³				اع ع	~	°_	~					 ttom tw
	с. 8. 8		7.6 g	43 Ib	96 in ^ŝ	.71 cm	61 lb/	58 g/(в 8	.0 8	.24 cm	95 in ^ŝ	.48 cm	02 in ^ŝ	-	76		1%	 ured; bo
	- 743		= 101	= 2.2	= 36.9	605.	= 0.0(1.£		= 2.:	= 762	= 343.	20.5	= 262.	16.(= 0.7		= 79.1	se not cu
nmary	Sovendry =		Mass	Weight	/olume		Density			NED_FINES	Y_SAMPLE	Vsouds		V _{VOIDS}			e		Ō	Top Slic
Sur	ΣMas				2		_			M _{DR}	M _{DR}									Note:

113

APPENDIX D

Dallman Boring Log and Cross Section

August 30, 2010

City Water, Light & Power Environmental Health & Safety 201 East Lake Shore Drive Springfield, Illinois 62712

Attn:Ms. Sue CorcoranTel:217-757-8610Fax:217-757-8615

Re: Piezometer Installation CWLP Ash Ponds East Lake Shore Drive Springfield, Illinois PSI Report No. 0020522-1 Rev. 1

Page 1 of 22 (including attachments)

Dear Ms. Corcoran:

In general accordance with your instructions, Professional Service Industries, Inc. (PSI) has completed the installation of four (4) temporary piezometers at the periphery of CWLP's ash pond area in Springfield, Illinois. Additionally, certain laboratory analysis was performed, as was in situ hydraulic conductivity (slug) testing. The piezometer locations are identified on the attached location plan. Boring depths and static water levels are shown in the table below.

	AP-1	AP-2	AP-3	AP-4
Date drilled	4/21/2010	4/21/2010	4/21/2010	4/20/2010
Total boring depth (ff)	31.5	20	19.5	60
Plezometer depth from top of first	33.15	19.47	19.63	58.93
Piezometer depth from ground	28.34	17.18	17.91	58.31
Well screen length (ft)	10	10	10	10
Static water level from ground surface (5/5/2010)	4.81	3.89	5.16	5.95

The borings were drilled to depths ranging from approximately 17.2 to 58.3 feet below the existing ground surface, respectively. It is PSI's understanding that the purpose for these soil borings is to aid CWLP in assessing the groundwater quality outside the existing CWLP ash ponds. The general boring locations were determined and located in the field by CWLP personnel. With the approval of Ms. Corcoran, AP-2 was offset to the north of the clarifier pond drainage pipe. Depths on the attached boring logs are relative to the ground surface at each boring location.

Water level observations were made during and upon completion of the boring operations and are noted on the boring logs presented herewith. In addition, static water levels were observed

Professional Service Industries, Inc. • 480 North Street • Springfield, Illinois 62704 • Phone: 217/544-6663 • Fax 217/544-6148

at the time of the slug testing. In relatively impervious soils, the accurate determination of the groundwater elevation may not be possible even after several days of observation. Seasonal variations, temperature and recent rainfall conditions may influence the levels of the groundwater table and volumes of water will depend on the permeability of the soils.

Soil samples were visually classification in the field for logging purposes. The limited laboratory testing program included grain size analysis. Where soil tests are reported, they have been performed in accordance with generally acceptable or applicable standards. Sieve analysis worksheets are appended. Soil samples were conveyed to CWLP upon completion of the well installation activities.

A copy of the boring logs are appended. The stratification of the soils on the log represents the soil conditions in the actual boring location. Lines of demarcation represent the approximate boundaries between the soil types, but the transition may be gradual.

On May 5, 2010, in situ rising head hydraulic conductivity (slug) testing was performed on each of the four piezometers. Testing was conducted by rapidly removing one bailer (1 liter) of groundwater from the well while recording the rate of recovery using a Solinst 3001 level logger. Hydraulic conductivity was estimated using the Hvorslev method. Based on this method, the average hydraulic conductivity was estimated at 2.50E-02. Slug test results and hydraulic conductivity calculations are appended.

PSI appreciates the opportunity to perform these services and if we can be of further service, please contact our office at (217) 544-6663.

Respectfully submitted, PROFESSIONAL SERVICE INDUSTRIES, INC.

James Gerloff, E.I. Branch Manager

Attachments:

Key to Symbols Boring Logs (4 pages) Piezometer Location Plan In-Situ Hydraulic Conductivity Results (6 pages) Sieve Analysis Worksheets (8 pages)

2.

Distribution: (1) above

CWLP Ash Pond Springfield City Water, Light & Power

William P. Pongracz, P.E. Vice President

Professional Service Industries, Inc. PSI Project No. 0020522 Rev. 1

Professional Service Industries, Inc.

KEY TO SYMBOLS

Fill (made ground)

USCS Low Plasticity Clay

USCS Silt

USCS Low Plasticity Sandy Clay

USCS Clayey Sand

USCS Well-graded Sand with Silt

USCS Poorly-graded Sand

USCS Well-graded Sand

HSA = Hollow Stem Auger

CFA = Continuous Flight Auger

SPT = Standard Penetration Test

DCP = Dynamic Cone Penetrometer

SS = Split-spoon Sampler

ST = Shelby Tube Sampler

RC = Rock Core

DD = Dry Density

LL = Liquid Limit

PL = Plastic Limit

Qu = Unconfined Compressive Strength

Qp = Pocket Penetrometer

RQD = Rock Quality Designation

REC'D = Rock Core Recovery Percentage

PID = Photo Ionic Detector (ppm)

MR* = Unable to determine depth of water due to mud rotary drilling methods

The borings were advanced into the ground using hollow stem augers. At regular intervals throughout the boring depths, soil samples were obtained with either a 1.4-inch I.D., 2.0-inch O.D., split-spoon sampler or a 3-inch diameter Shelby tube. The split-spoon sampler was first seated 6-inches to penetrate any loose cuttings and then driven an additional foot where possible with blows of a 140 pound hammer falling 30-inches. The number of hammer blows required to drive the sampler each 6-inch increment is recorded in the field. The penetration resistance "N-value" is redesignated as the number of hammer blows required to drive the sampler the final foot and, when properly evaluated, is an index to cohesion for clays and relative density for sands. The split-spoon sampling procedures used during this exploration are in general accordance with ASTM Designation D 1586.

Relatively undisturbed Shelby tube samples were obtained by forcing a section of 3-inch diameter steel tubing into the soil at the desired sampling levels. This sampling procedure was in general accordance with ASTM Designation D 1587. Each tube, together with the encased soil, was carefully removed from the ground, sealed and transported to the laboratory for testing.

Professional Service Industries, Inc. 480 North Street Springfield, Illinois 62704 Telephone: 217/544-6663 Fax: 217/544-6143

PSI Job No.: 0020522 Project: Piezometer Installation Location: CWLP Ash Pond East Lake Shore Drive Springfield, Illinois

(F){		F 4 S T F	Profes 80 No Spring Teleph ax: 2	sional Service Ind orth Street field, Illinois 6270- one: 217/544-66 17/544-6143	ustries, Ir 4 63	Drilling I	Method:	Hollow S	Stem Au		OF E	BORING	AP-1 Sheet 1 ER LEVEL	s
PSI Jo Project Locatio	b No.: :: on:	0020 Piez CWI Easi Sprii)522 ome _P A : Lak	ter Inst sh Pon te Shon Id, Illin	allation d e Drive ois	•	Samplin Hamme Boring 1	g Method: r Type: .ocation:	Split Spo CME Au See atta location	oon tomatic ched b plan.	;; ETR = { oring	6%	⊻ While Dr ⊻ Upon Co ⊻ Delay	illing mpletion	9
Elevation (feet)	Depth, (feet)	Graphic Log	Sample Type	Recovery (inches)	Station: N/A Offset: N/A MATERIAL DES	CRIPTIO	USCS Classification	SPT Blows per 6-inch (SS)	Maisture, %	ANDARE TE: N in Mois STRI	D PENETRA ST DATA blows/ft @ sture 4 25 ENGTH, ts 20		Additional Remarks	V Dia	مر Ne
				I 18 2 18 3 18 4 18 5 18 5 18 5 18 6 18 7 18 8 18 9 18 10 18 11 6	Dark brown silty CLA slightly moist Dark brown clayey S slightly moist Gray dayey SILT, tra firm, moist Gray sandy CLAY, few firm, saturated Gray sandy CLAY, few firm, saturated Gray sandy CLAY, satu very stiff, moist to sa Gray SAND with SIL dense/very stiff, satu Gray SHALE, hard, s Boring terminated ay	Y, very stiff, LT, stiff, ICE brown, Drown sand, Drown sand, Iff, saturated T, soft to turated T, medium rated Stophty moist -31.5'	CL ML CL CLS ML SW-SM	$\begin{array}{c} 7-8-9\\ N_{e0}=24\\ 55-5\\ N_{e0}=14\\ 2-2-3\\ N_{e0}=7\\ 1-2-2\\ N_{e0}=6\\ 1-2-2\\ N_{e0}=6\\ 1-2-2\\ N_{e0}=10\\ 3-3-4\\ N_{e0}=10\\ 3-3-4\\ N_{e0}=10\\ 1-2-1\\ N_{e0}=4\\ 6-7-6\\ N_{e0}=19\\ 50/6^{n} \end{array}$							note P P No No No No No No No No No No No No No
Comp Date Date Logge	eletion I Boring Boring ad By:	Depth: Started Comple	l: eted	35 4/2 : 4/2 Ro	0 ft 11/10 11/10 b Preuss	Sample T Auger X Split-S Rock	Types: Cutting Spoon Core	S C T	Shelby Tu land Aug Texas Co	ube ger one	Latitude Longitu Drill Rig Remark efficient	e: de: :: ATV I (s: N ₆₀ C cy as de	250 lenotes the nor scribed in ASTI	nalization to M D4633. Mo	

				E	lec	stronic-Filing: Re	ceive	ed, Cl	erk	's 0	ffice 08/2	7/2 02 0	
	0	9		Pr 48 Sp Te	ofess 0 No ringf leph	sional Service Industries, rth Street ield, Illinois 62704 one: 217/544-6663	Inc.				LOG OF	BORING	AP-2 Sheet 1 of 1
PSI Proje Loca	iob No. ct: tion:	: 00 Pi C\ Ea Sp	205 ezoi MLF ast L oring	22 nete Ash ake	<u>x: 2</u> r Insta i Pond Shore , (Ilino	1 //544-5143 1 1 9 Drive 13	Drilling Sampli Hamm Boring	Method: ng Method er Type: Location:	Hollo Split CME See a locati	w Stem Spoon Automa attached on plan	Auger atic; ETR = 86% 1 boring	WAT ∑. While Di ▼ Upon Co ▼. Delay	ER LEVELS illing 9 feet ompletion N/A N/A
Elevation (feet)	Depth, (feet)	Graphic Log	Sample Type	Sample No.	Recovery (inches)	Station: N/A Offset: N/A MATERIAL DESCRIPTIC	USCS Classification	SPT Blows per 6-inch (SS)	Moisture, %	STAND/ N × N S	ARD PENETRATION TEST DATA In blows/ft @ foisture @ PL 25	Additional Remarks	Well Diagram
	- 0			1 2 3 4 5	10 8 6 18 18	Dark brown silty CLAY, some sand, stiff, slightly moist (FILL) Dark brown silty CLAY, soft to firm, moist Gray silty CLAY, soft to firm, moist Gray clayey SILT, soft to firm, saturated	CL CL CL CL ML	$\begin{array}{c} 4 - 4 - 6 \\ N_{e0} = 14 \\ 2 - 2 - 2 \\ N_{e0} = 6 \\ 1 - 1 - 2 \\ N_{e0} = 4 \\ 2 - 2 - 2 \\ N_{e0} = 6 \\ 2 - 1 - 1 \\ N_{e0} = 3 \\ 2 - 1 - 1 \\ N_{e0} = 3 \\ 2 - 1 - 2 \\ 0 - 1 \\ 0 - $					Concrete Cap 2" PVC Solid Riser Bentonits Seal Filter Pack
	- 15 20 -			8	18	Light gray SAND, dense, saturated <u>Grav SHALE, hard, slightly molst</u> Boring terminate at -20'	SP CL	N ₅₀ =4 4-9-16 N ₅₀ =36 19-24-50/2					Doll* PVC Slotlad Well Borben
												· .	
				1	•								
Comp	Dietion (Depth:			20.0	ft Sample T	ypes;				Latitude:	·	

					E	lec	tronic Filin	g: Rec	eive	ed, Cle	erk	's C	Offic	e C	8/2	7/2	2020			
-	[F){	5	j	Pro 48 Sp Te	ofess 0 Noi ringfi lepho	ional Service Ind th Street eld, Illinois 6270- one: 217/544-66	ustries, In 4 63	IC.			•	LC	CG	OF	BC	DRIN	G A	P-3 Sheet	1 of 1
	PSt. In	h No '	00	205	<u>Fa</u> 22	<u>x: 2</u> 1	//544-6143		Drilling	Method: I	Hollo	w Stem	Auge	г		. [W	ATER	LEV	ELS
	Project	ti .	Pie	zor	nete	r Insta	llation		Sampli	ng Method:	Split (Spoon Autom	atic: F	TR = 8	36%		V While	e Drillir	ig: j. l	None feel
i	Locatio	on:	Ea	v∟P .st L	ake	Shore	Drive		Boring	Location:	See a	ittache	d borin	ıg			Upor	i Comp	etion	N/A
		1	Sp	ring	field	, Illinoi	S Station: N/A	· · · · ·		<u>່</u> ເ		on plan		NETR		1	<u></u>	,		
	~		• .			(se	Offset: N/A		tion	ch S			TEST							J-Plug
	(feet	(teet)	fog	Type	No.	(inch		CDIDTIO	ssifica	e ein	e, %	X	Vicișture		PL	Å	dditional			Well
	ation	pth, (aphic	aple	mple	very	MATERIAL DES		S Clar	Ms be	Aoistu	0	25		50	F	Remarks			Diagram
1	Elev	å	6	Sal	ŝ	Reco			nsc	TBlo	-	s	TREN	GTH, ts	1					•
								V transfer		<u>8</u>		0	QU 2.0	, *	4.0		· · ·			
		Ľ ۲			1	18	slightly moist	r, very sun,	CL	6-7-8			ø							Cap
		╞ <u></u> ╶╴		X	2	18	Gray/brown clayey S	LT, soft to	-	3-3-4		ø					•			2" PVC Solid Riser
		E 5 -			3	18	Sult, moist to setulate	u.	ML	N ₆₀ =10 1-1-1		ø								. Bentonite Seal
		1 :			4	18	Grav clavey SILT, so	t to verv	4	N _{e0} =3 2-1-2		þ								
		- 10 -			5	18	stiff, saturated			N _{eo} ≕4 2-2-4		P					•			_ Sand
		E 3			6	16			ML	N _{e0} =9 2-2-4		Q								Filter Peck
		- 15 -			7	18				N ₆₀ =9 4-4-6										
		Ē			8	10				N ₆₀ =14 32-50/3"					>>@)				Well Screen
		- 20 -			Ū		Boring terminated at	-19.5	7 -			+								· .
、																				
1								•					.		ĺ					
		1				. ·														
										•		ŀ		•						
																				·
																_				
									1.											
							•											:		
																				•
		•																		
						1	· ·													
																•			•	
			<u> </u>			<u> </u>				· ·				at its and n			· · ·			-
	Comp Date I	letion Boring	Depth Starte	: ed:		20.0 4/21	π /10		ypes: Cutting	s s	helbv	Tube		ngitu nii Pia	 de: ₁•/	050				
	Date I	Boring of Ry	Comp	olete	ed:	4/21 Roh	/10 Preuss	Split-S	poon	ВН	and /	Auger	R	emark	s: N _{eo}	dend	tes the i	normal STM F	ization 4633.	to 60% Moistures
١	Drillin	g Cont	ractor	:		PSI,	inc.	Rock C	Core	Te Te	exas duel	Cone	d	etermi	ned by	visu	al metho	ds		

	G	54		;]	Pro 48	ofess 0 No	ional Service Indu th Street	ustries, Ir		u, Ci	erk		1		ÖF	BC		NG		P-4	
	[],			J	Te	lepho	one: 217/544-666	, 33					-		U 1				S	heet	1 of 1
\sim	PSt Jo	b No.:	-00	205	<u>_</u> 22	X	1/1044-0140		Drilling	Method:	Hollo	w Ste	m Aug	ег			٧	VAT	ER	LEVI	ELS
	Project	t:	Ple	zor	nete	r Insta	llation		Samplin	ng Method	:Split	Spool	1		000/	-	⊈wt	nile Dr	illing		11 feet
	Locatio	on:	CV E	VLP	Ash	Pond	Drive		Boring	Location:	See	attach	naac; ed boi	ing =	80%		🖳 Up	on Co	mple	tion	N/A
			Sp	ring	field	, illino	s .		-		locat	ion pla	ın.				T De	lay		غنسب	N/A
					•		Station: N/A		_	· (ss)		STAN	DARD I	ENETR	ATION						
	(je	â	D5	g		ches			catio	臣	*		N in bl	ws/ft_6					•	•	Well
1	u de la constante de la consta	(fe	ic L	e T	le N	k (ju	MATERIAL DESC	CRIPTIO	N	per 6	ture,	X ,	Molstu	ure lat ∎		A	dition	al			Diagram
	vatio	epth	lapt	amp	amp	over	7		SC C	· SMO	Mois		Γ	/		к	emari	s	• . -	† - † -	J-Plug
	ᇳ		U U	Ö	0)	Rec	· .		ns:	18			STRE	iGTH, t	sf 6 On						
		- 0 -					Brown silts CLAV son	a breva		ts.		0		2.0 T	4.0						
		22		X	1	17	sand, firm to stiff, sligh	itly moist		4-4-3		Ģ							\otimes	N.	Concrete Cap
				X	2	18	Brown silty CLAY, trac firm to stiff, moist (FILI	e roots,	CL	N ₆₀ =10 4-3-2		6				•					
		- 5 -	×			40		-' . 		N ₈₀ =7			1								
		F =	▩	Ľ	3	10	stiff, moist (FILL)	y, 11m to	ML	N ₆₀ =7		ľ									
	•	F 10 -		X	4.	12	5" Brown SAND transi 7 Black FLY ASH at 9.4	tioning to stiff to	· ·	2-2-4 N _{s0} ≡9		-									
		F =		Х	5	18	very stiff, slightly mois	t (FILL)	SAND/FI	2-2-2 x N=6		Ø									
		E		X	6	16			ASH	2-1-1		d_									
		E	\bigotimes	X	7	16				N₅₀=3 6-6-5							·				
		Ε.Ξ	***		•	10	Black FLY ASH, some sub-round gravel, stiff	to very stiff,	FLY	N ₆₀ =16		6	1							₩-	-2"PVC Solid
		20 -		М	.0	10	Gray/green (organic?)	CLAY, stiff,		N ₅₀ =9		Ħ									Riser
	•							to saturateu											25		
· ()		- 25 -		[X]	9	1			CL	3-3-4 N-==10	.	6						. 1			
										1.60		1								1	Bentonite
		- -		X	10	18	Brown/gray silty CLAY	, fiorm to		2-2-3		þ					•				
		- 30 -					stiir, saturaled		CL	N ₆₀ =7		\square									
	l .																				
		- 35 -	IIII	X	-1 1 -	18	Gray SILT, stiff to very saturated	stiff,		3-3-4 N ₆₀ ≕10			<u></u>					•			1
		= =																			
		E		X	12	18				4-4-4			¥	·		•				۶. K	
		<u>t</u> -							ML	1¥50 ⁴⁴			١								
		<u></u>			13	18	•			4-4-6			0								
		- 45 -		۲ ۳				•		N ₆₀ =14	.	·	1				-	·.		1	
		¢																			
		- 50 -		×	14	18	Gray fine to coarse SA	ND,	-	4-5-7 N₅₀=17	l		 								
	1						medium dense, satura	iieū				1							K.E	訂	Sand Filter Pack
		F		X	15	18			sw	5-5-7	1		6						E		
:		- 00 -		Π						N ₅₀ ≕17							•		E		0.01" PVC Slotted
					16	1	Gray SHALE, hard, m	oist	- _{CI}	50/1"		{			>>@) [.]					Screen
- .• i		- 60 -					Boring terminated at -6	\$0'	-				1								
1	Compl	etion [) Depth:			60.0	ft	Sample Ty	/pes:			.l		atitude	L				 		
	Date B	loring	Starte	d:	d.	4/20/	10	Auger (Cutting	s	helby	Tube		ongitu Mil Rig	ie: : ATV	D50			•		
	Logge	d By:	omp	66	u:	Rob	Preuss	Split-Sp	оол		and A	luger	F	temark fficiend	s: N ₅₀ cyasd	denot escrib	es the ed in a	norm ASTM	ializa D46	ition t 33. I	o 60% Moistures
\cap	Drilling	Conti	ractor:	165	mm	PSI,	Inc.	es. The fra	ore nsition m	nav be gra	exas dual	Cone		etermi	ned by	visua	Imeth	ods			

•

.

.

.

.

.

In-Situ Hydraulic Conductivity Test Analysis Utlizing the Hvorslev Slug Test Method¹

GOVERNING/EQUATION	
$K = (r^2 + \ln(L_{\bullet}/R))/(2L_{\bullet}T_{o})$	•.
•	
K is the hydraulic conductivity (cm/sec)	
r is the radius of the well casing (cm)	· . ·
R is the radius of the borehole (cm)	•
L _e is the length of the well screen (cm)	•
$T_{\rm o}$ is the time it takes for the water level to rise or fall 37% of the initial	al change (sec)

CWLP As	h Ponds, East	Lake Shor Hydraulic	e Drive, Spri Conductivity	ngfield, Illir ⁄ Analysis²	nois	In-Situ
Test Number	Test Type	لے (ft)	L, (cm)	T _e (min)	T。 (sec)	K (cm/sec)
AP-4	Rising Head	10.0	304.8	0.025	1.500	7.64E-02
AP-3	Rising Head	10.0	304.8	0.083	4.980	2.30E-02
AP-2.1	Rising Head	10.0	304.8	0.150	9.000	1.27E-02
AP-2.2	Rising Head	10.0	304.8	0.167	10.020	1.14E-02
AP-1	Rising Head	10.0	304.8	1.667	100.020	1.15E-03

AVERAGE: 2.50E-02

	CONST	ANTS	
г	r	R	R
(inch)	(cm)	(inch)	(cm)
2.0	5.08	8,0	20.3

	HVORSI	EV CALCU	LATIONS			
	L _e /R	in(L_/R)	L _e T _o	к		
Test	(-)	(-)	(cm*sec)	(cm/sec)		
AP-4	15.00	2.71	4.57E+02	7.64E-02		
AP-3	15.00	2.71	1.52E+03	2.30E-02	<u> </u> .	
AP-2.1	15.00	2.71	2.74E+03	1.27E-02		
AP-2.2	15.00	2.71	3.05E+03	1.14E-02	AP-2 AVG:	1.21E-02
AP-1	15.00	2.71	3.05E+04	1.15E-03		

Notes:

¹ Hvorslev slug test method applied as described by C.W. Fetter in Applied Hydrology (Third Edition) published by Prentice-Hall in New Jersey in 1994 on pages 247-251.

²¹n-situ hydraulic conductivity tests conducted on monitoring wells, MW-1 thru MW-4 on May 5, 2010.

.

TEST START SLUG REMOVED

.

TEST START SLUG REMOVED

TEST START SLUG REMOVED

				000000		10121111111111111111111111111111111111	611 C 638374	00100101010000000000000000000000000000	11210/112260			1992/02/02/02/04	0278280	2.5 2 0/206263	01120100100	2000 00 100 00 00 00 00 00 00 00 00 00 00	101100130	A455,0.166810.			1209BB	and a location	EV. 050260			1002/002/002	25/2000623	526000 CO2828	992590 0 225	BIZENDUU	ocal-to-use	10001600		19202010	210.027863	100000	01000015	001010101	C108100000		ENTROPICITY I	140800.0304	855550 008420	100000 V	C89500,0242	F. 10.004003	
•	Change of Statk	c	1.4489	1.2179	1.0779	0.8653	0.7815	0.7048	0.8408	1282.0	0.4827	0.4408	0.4032	0.3713	0.3109	0.2876	0.281	0.2417		0.1899	0.1753	0.1624	0.1486	0.1363	0.1182	0.1094	5860.0	0.0927	0.085	ac 10,0	0.0651	0.0607	8149070 0 0 0 00	0.044	0,0404	0.0367	10000	0.0271	0.0261	. 0.0188	0.0161	0.0131	0.0122	0,0087	0,0068	0,0058	0,0007
	Vater Level Bottom o	11 D45	12.484	12.263	12.123	11.811	11.827	11.750	11.686	11.628	11,528	11.486	11,448	11.417	11356	11.333	11.308	11.287	11.200	11.235	11.221	11.208	. 11.185	11.184	11.162	11.155	11.145	11.138	161,11	211.11	11.11	11.105	11.100	11.069	11.086	11.082 11 0en	11.076	11.073	11.072	11:064	11.062	11.058	11.058	11.054	11.052	11.061	11 040
		SACA B	6.8757	7.2067	1046.1	7.5583	7.6431	7.7197	1.7835	7.89.7	7,9419	7.9837	8.0214	8,0533 R 0854	8,1137	8,1368	8.1636	8.1829	0.2005 B	8.2347	8.2493	8,2622	8.275	8.2003 B	8,3084	8.3162	8.3253	8.3319	6.3360 8 3487	8,3532	8.3685	8.3639	1400.0	8,3806	8,3842	8,38/9	8.3943	8.3975	2985.8 7007 8	8,4058	8.4085	8.4115	8.4124 R.4148	8,4159	8,4178	8.4188	DECY N
	Temperature	11 11	11.11	11.114	11.115	11.117	11.117	11.118	11.121	112	11.123	11.123	11.123	11.124	11.125	11.125	11.127	11.128	11.127	11.126	11.127	11.128	11.128	11.128	11.13	11.13	11.128	51.11 51.11	11.132	11.131	11.132	11.132	11.133	11.133	11.134	11.134	11.135	11.134	11,135	11.138	. 11.136	11.136	11.136	11.138	11.138	11.137	11 138
	Test Time (min)		0.000	0.017	0.050	0,067	0,083	0,100	711.0	0.150	0.167	0.163	0.200	717'n	0.250	0.267	0.283	0.300	1220	0.350	0.367	0.363	0,400	1440	0.450	0.467	0.150	0.547	11cm	0.650	0.567	0.683	0.617	0.633	0.650	0.683	0.700	0.717	0.750	0.767	0.783	0.800	0.833	0.850	0.867	0,883	0 017
	Time (min)	0.000	0.017	0.033	06070	0.083	0.100	0.117	0.133	0.167	0.183	0.200	0.217	0.250	0.267	0.283	0.300	116.0		0.367	0.363	0.400	0.417	0.450	0.467	0.483	0.500	/16.U	0.550	0.567	0.583	0.800 0.817	0.633	0.650	. 1990	0.700	1170	0.733	0.767	0.783	0.800	0.817	0.850	0.867	0.863	0.000	0.837
	<u>ET (sec)</u>	D		e) r	•	. vo	g	-		₽₽	:=	ġ.	tt ;	<u>د</u> بن	16	17	8	₽ \$	5 F	ន	ន	21	88	85	8	8	ន	56	ងម	Ŗ	ន	₹¢	5 R	38	2 :	4	4	1:	7 4	4	-	8	9 2	52	53	5 5	1
	Time	10:08:47	10:08:48	10:08:49	10:00:00	10:08:52	10:08:53	10:08:54	10.08555	10:08:57	10:08:58	10:08:50	10:09:00	10:09:01	10:08:03	10:09:04	10:09:05	10:80:01	10.00.01	10:09:09	10:09:10	10:00:11	10:09:12	10:08:14	10:08:15	10:09:16	10:08:17	01.00.10 10-00-01	10:08:20	10:08:21	10:08:22	PZ:BU:U1	10:08:25	10:09:26	10:09:27	10:08:28	10:09:30	10:00:31	SE:BO:01	10:08:34	10:09:35	10:09:36	10,00,01	10:08:39	10:09:40	10:08:41	10-00-43
	Date	5/5/2010	5/5/2010	5/5/2010	5/6/2010	5/5/2010	5/5/2010	5/5/2010	0102/0/0	5/5/2010	6/5/2010	5/5/2010	5/5/2010	SI5/2010	5/5/2010	5/5/2010	5/5/2010	010/2010	5/6/2010	6/6/2010	5/6/2010	5/5/2010	5/5/2010	5/5/2010	6/5/2010	5/5/2010	5/5/2010	5/5/2010	5(5/2010	5/5/2010	5/6/2010	5/6/2010	5/5/2010	5/5/2010	5/6/2010	5/5/2010	5/5/2010	5/5/2010	5/5/2010	5/5/2010	5/5/2010	5/5/2010 5/5/2010	6/5/2010	5/6/2010	6/5/2010	5/5/2010	5/5/2010
		-	77	e 4	- 47		1		₽₽	2=	1	ti :	7 4	<u>n</u> 19	12	₽	₽ (3 2	ន	8	2	នេះ	8 F	1	8	8	स स	38	3 2	58	8	78	; 8	육 :	÷ {	≠₽	₹	री ह	₽ ₩	4	\$	6	ន	5	31	8 5	i.
	•		•					. ·		81-180	08:43		, ,					,							<i>!</i>	• .		d'H20		ude above	•			- Land (A)										-,			
								Tout 2		6	₽	:.	č	8.			•	•							•	. '			-	Does not incl				••••		· ···				••••	••••	••••			HIDDA 10,05,05		
	3001	5/11/2010 \m\ w -3, 2.csv		antochit		Solinet 3001		AP-2	RISPO10	5/5/2010	6/5/2010		•	67			19		Level	faet	•	Tamantua	i nancia di na			9 ! 2 !	JYAL	112910 14001		nating above ground.		たいな話のと言語				•		•••			••••	••			5 10.05.05 10.05.05 10 5 10.442-01 10.0645 10		
	Solinst .	Report from file:		Serial nerother		Unit name:			Test delined on:	Test started or:	Test stopped on:		euterot using Lineer losling hetween dete noleier	umber of data samples:	• .		JIAL DAIA SAMPLES	Channel number [1]	Measurament type:	환기		Commer number (2) Manutament huna-	nicesurginais syste.	Sensor Range:	Specific gravity:	Mode:	Per-quinted requirings : Referenced on:	statute head at reference:		pih to top of first casing termi	udentejonte.					· · · · · · · · · · · · · · · · · · ·									100505 100505 100505 100505 100845 100800 100845		
													Time I	Ž			2	Ţ			•	-				:	5	Pa		deb lloW*	te sunció	「日本」という			000018			(11)	2007 2007	I	•						

	TEST START	SLUG REMOVED									1000-001				11-sta		5	6004				2100											1002							22.55		
			COMPLEX S		CONTRACTOR OF	0.0000000000000000000000000000000000000	001010101010	022(670/05)	641x11x11x1	01010101010	a to to out A 25	0101210012		220 010 200 1000	A 192023/1000	0.01010	0.011200	0.01230010000000000000000000000000000000	00027072	0.027000	0.010000000000000000000000000000000000	0.034610003	20000000000000000000000000000000000000		0.022536668		1000101010102002	2 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000000000		0.0000000000000000000000000000000000000	0.000011232	2012/01/01/2012/17	000500101		0.00111220	0000000		2000 001 00454	1. 10000000122	10/00/25/22/15/	
Water Level (II)	0	2.4804	1.185	1.0524	0.8308	0.7453	0.606	0,5496	0.4533	0.4163	0.3472	0.2808	0.2685	0.2283	0.2089	0.1787	0,1531	0.1422 0.1317	0.1226	0.106	0.0967	0.0856	0,0735 0.0697	0.0646	0.0558	0.0481	0.045	0.0386 0.0356	0.0328	1260.0	0.0287 0.0232	0.0226	0.0181	0.0154	0.0115 0.0109	0.0102	120010	0.0048	0.0046	0.0024	0.0007	
Well to TOC. (II)	12.204	14,684	886.51	13.256 43 436	13,034	12.949	12.810	12.763	12.857	12.610	12.551	12.521 12.485	12.472	12,432	12.413 47 706	12.382	12.357	12.346 12.335	12,328	BIEZ	12.302 12.25H	12.286 12.284	12.277 12.273	12.268	12,280	12.255	12.249 12.245	12.242	12.237	12 233	12.230	12 226 12 225	12 222	12.218 12.218	12.216 17.715	12214		12.20	12.205	12.206 12.206	12.204	
r Ievel	7.4264	4.946	6.2314	6,374	6.5956	6,6811	6,8204	6.8768	6.9731	1110.7	2620.7	7.1355	7.1679	7.1881	72175	12477	2102.7	7.2842	7.3038	1.3204	7.3358	7.3408	7.3529	7.3618	7.3705	7.3748	7.3814	7,3878 7,3908	7,3835	179621	7.3997	7.4058	7.4083	7.4116	7.4148	7.4162	7.4187	7.4215	7.4218	7,4244	1924.1	
Temperature	11.841	11.841	11.841	11.838	11.841	11,84	11.84	11.837	11.837	11.837	11.836	11.83/	11.637	11.834	11.836	11.831	11.831	11.829	11.829	11.83	11,83,11,83,	11.828 11.827	11.827 11.825	11.826	11.823	11.824	11.823 11.821	11.82	11.819	11.818	11.816 11.819	11.815 11.817	11.816	11.815	11.814	11811	18.11	11.81	11.809 11.811	11.81 11.809	11.807	
st Time (min)		0007	0.033	0.050	0,083	0.100	0.133	0,150	0.183	0.200	0.233	0,267	0.283	0,317	0.333	0.367	0,400	0.417 0.433	0.450	0.150	0.500 0.617	0.633 0.650	0.567 0.683	0.600	0.633	0.667	0.883	0.717	0.750	0.783	0.800	0.833	0.867	0.800	0,833	0.967	1.000	1.033	1.050 1.067	1.1003	1.117	
Lim <u>e (n</u> in). Lo	0.000	0.017	0.050	0.067	0.100	0.117	0.150 0.150	0.167	0.200	0.217	0.260	0.287	0.300	0.333	0350	0.383	0.417	0.433	0.467	0.500	0.517	0.550	0,583,0	0.817 1.810	0.850	0.667	0.700	0.733	0.767	0./63	0.817 0.833	0.850	0.963	0.833	0.950	19850 1987	101	1.050	1.067	1.100	1.133	
ET (860)	0		N ID	4 1	b 40	~ •	20 GA	2	: 12	₽3	ខេស៊	8 ¢	₽ 5	2 R	20	ងន	នុង	82	នុខ	88	2 2	នគ	5	36 8	88	4 -	4 1	24	: 4 i	4	69 19	5	82	88	6	885	3 2 3	5	2 2 3 3	88	88	
anii.	10:44:20	10:44:21	10,44,23	10:44:24	10:4428	10:44:27	10:44:28	10:44:30	10:44:32	10:44:33	10:44:35	10:44:37	10:44:38	10:44:40	10:44:41	10:44:43	10:44:45	10:44:48 10:44:47	10:44:46	10:44:50	10:44:51 10:44:52	10:44:53 10:44:54	10:44:55	10:44:57	10:44:59	10:45:00 10:45:01	10:45:02	10:45:04	10:45:06	10:45:07	10:45:08 10:45:10	10:45:11 10:45:12	10:45:13	10:45:15 10:45:18	10:45:17 10:45:18	10:45:19 40:45:19	10:45:21	10.4522	10:45:24	10:45:26 10:45:27	10:45:28	
Date	5/5/2010	5/5/2010	5/6/2010	5/5/2010	5/5/2010	5/6/2010	5/5/2010 5/5/2010	5/5/2010	5/5/2010	5/5/2010	5/6/2010	5/5/2010	5/5/2010	5/5/2010	5/5/2010	51572010	5/6/2010	5/5/2010	5/5/2010	5/5/2010	5/5/2010 5/5/2010	6/6/2010 5/6/2010	5/5/2010	515/2010 515/2010	5/5/2010	515/2010	5/5/2010 5/6/2010	5(5/2010	6(5/2010	5/5/2010	5/5/2010 5/5/2010	5/5/2010 5/5/2010	5/5/2010	5/5/2010 5/5/2010	5/5/2010	5/5/2010 5/5/2010	5/5/2010	5/5/2010 5/5/2010	5/5/2010 5/5/2010	5/5/2010 5/5/2010	5/6/2010	
	-	-	P 4	lin (• ~		• ₽	;=I		21	ς ές	₽ 8	æ (3 ភ	ន	373	88	5 51	8	តត	88	ភូន	86		87	2 4	4 4	탄 성	; ; ;	₩ ₩	85	នេន	133	86	89	8 8 2	82	83	8 8 8	5	821	222
			1					10:4421												ConFreet HZD: A set	Faet H20:	not include above 🙃			[[]]					<u></u>		0048:00						•				r
	2 1.cv		1022308		Constant Supplication	AP.3 Tust	SISPO10	6(5/2010					60		Lovel State		amperature: "	Dep C		1000		above ground. Does						. 	••••													
·	and the second se							: 5	1	galing			æ				1 				Ce:	o termineting		- point	`\		1			· · · · ·												
Solinet 	Report from file:		Sectal number:	: •	Unit name:	Test name:	 Test defined on: 	Tost started on:	I est stopped on:	te gethered using Linear it	Number of data sample		TOTAL DATA SAMPLES	Channel number [1]	Measurament type:		 Channel number [2]; Measurement type; 	El Santor Renort	Specific gravity	Usar-defined reference	Pressure head at referen	il deoth to too of first ceele	und extensions.				1 (000)		<u> </u>		00003	10:44:00 10:4										
							•	-		<u>,</u>	,				-		,					•W•	OLOI	işi Ma			् (इ.) favja	٦.										•			

							Wat	ter Level Boltom of	Change of Static		
	Date	<u>. Time</u>	ET (\$95)	Hime finlat. I	est Time (min). Te	unperature.	Level y	vel to TOC (III)	Waler Level In		
Report generaled: 6/11/2010	4 GIEPOAN	11-26-31	G	0.000		12.789	13.4081	45.522			TEST START
Report from the		11-25-31		0.000	0.00	12.789	11.9721	46.958	1.436		
	1000500 F	11:25:32	0.5	800.0	0,008	12.794	8.02638	50.904	5.38172		ם בנוס תבואט אבוי
	4 6/6/2/010	11:25:32	-	0.017	0.017	12.785	11.2523	41.678	71000		
	5 5/5/2010	11:25:33	1.6	0,025	0.025	12.73	1055.11	100 LT	11011	See of Architerta International	
Unit nume: Solinel 3001	6 5/6/2010	11.26:33	~	0.033	0.033	12/01	11,2401	47.332	1.8102	10000000000000000000000000000000000000	1952
	7 5/5/2010	11:25:34	17.	740,0	0.0150	12.778	11.5927	17.237	1.6164		N-1
Text, name:	6 5/5/2010	1122034	о <mark>к</mark>	n nën	0.058	12.78	11.8036	47.326	1,8045	1023023001726	100
	9 - 512/10	11.20.30	2 4	0.067	0.067	12.77	11.6202	47.310	1.7879	200711220E0 305	
Test defined on: 546/2010 5 555 5 555 555 555 555 555 555 555	11 515/2010	1125.36	4.5	0.075	0.075	12.775	11.8344	47.296	1.777		
Test standed on:	12 5/5/2010	11:25:36	'n	0.083	0.083	12.766	11.6361	47.284	1.772		
	13 5/5/2010	11:25:37	5.5	0.092	0,092	12/11	11.0445 11 8514	812.14	1.7567	0.326418600	n ca
Data gathered using Linear testing	14 5/5/2010	11/25/3/	0 4 6	0,108	0.108	12.767	11,5587	1227	1.7494	0.326063363	
Time between data points:	15 515/2010	11:25:38	-	0.117	0.117	12.768	11.6626	-47.267	1.7455		
	17 5/5/2010	11:25:38	7.5	0.125	0.126	12.782	11,869		19571		
	16 6/5/2010	11:25:38	ຄ່	0,133	0.133	75/71	11.0/38	132 14	1.7287	A 0.021217000	
TOTAL DATA SAMPLES	19 5/5/2010	1125:40	8.5 0	0.142	u.142 0 160	11 749	11.6836	17.245	1.7245	1100020430680 (A	
	20 815/2010	11:25:40	, u	0.158	151.0	12.753	11,6884	47.242	1.7197	18977581E0284	
Churnel number [1]	21 2/01/10	11-25-41	3₽	0.167	0.167	12.743	11,6921	47.238	1.716	03100010000	
Measuroment type: Level:	27 SISPO10	11:26:42	10.5	0.175	0.176	12.746	11.6869	47.233	1.7112		
	24 5/5/2010	11:25:42	Ŧ	0.183	0,183	12.738	11.7013		1./058		
The second se	26 6/5/2010	11:25:43	11.5	0.182	0,182	12.745	11.7049		24U/L		
Measurement type: Temporaluro	26 515/2010	1125:43	5	0.200	0.200	65/21 97.01	11.7131	11217	1,885	224003149660725	
Crit Dep C	27 5/5/2010	11/25/44	27 5	907-D	012-U	15 731	11.7157	47.214	1.6924	S 20001470953	19
Bensor Ranget	28 5/5/2010	11-25-45	13.5 13.5	0.225	0.225	12735	11.7212	47.208	1.6869 .	910677618 D 197	
Brechic gravity:	30 505010	1125:45	4	622.0	0.233	12.726	11.7248	47,205	1,6833		
1 less defined references" 50 25 Feet H2D *	31 5/5/2010	11:25:46	14.5	0.242	0.076	12.731	11.7288		1.8/93		
Referenced on: fost start	32 5/5/2010	1126:46	¥۵	0.250	0.260	12/21	112/211	47,185	1.6727	Sectors (06) (1) (3-3	
Pressure head at reference: Feet H20 - :	33 5/2010	11:20:47	0.'H	1367	. 0.267	12.719	11.7384	47.191	1,6687	F12(0,21000117)	
	34 332010 35 5057010	11:25:48	16.5 2	0.275	0.275	12.723	11.743	47.187	1.8651	977882690000	
"Well depth to top of that casing terminetrig above ground. Loos not attante autor	3.6 G/G/2010	11:25:48	11	0.283	0.283	12.713	11.7487	47.183	1,6614	Selvin Managements	
ground externation.	37 5/5/2010	11:25:49	17.5	0.292	0.282	12.718	11.75	47.180	1,6581		
	38 515/2010	11:26:49	8	0.300	0.300	12.708	87G/"LL	11111	1 6513	1007200027005	R.
	39 5/5/2010	11:25:50	18.5	0.308	RDC'D	41.7.21 41.7.21	11.1300	47 160	1 6469	10200017407	
	40 5/5/2010	11:25:50	19.5 19.5	0.326	0.326	12,709	11.7641	47.166	1.644	THE CONTRACTORY	
	0107000 1+										

)

SIEVE ANALYSIS WORKSHEET

CLIENT:	CWLP		PROJECT:	Piezometer In:	stallation
	Environmental H	ealth & Safety	ander al de la companya de la compa A companya de la comp	CWLP Ash Po	nds
				Springfield, IL	
DATE:	April 26, 2010		PSI REPORT NO.	0020522-1	Page 1010
GENERAL SA	MPLE INFOR	MATION			
SAMPLE TYPE: 0	Clayey SILT, Sor	ne Fine to	SAMPLED BY:	PSI	
Coarse Sand			DATE SAMPLED:	4/21/2010	· · ·
SAMPLE SOURC	E: AP-1, 3'-7'	<u>.</u>	TESTED BY:	Don Reed	
		1	DATE TESTED:	April 26, 2010	
SPECIFICATION	S: ASTM C136		NOTES/OBSERV/	ATIONS	
·			NP=Not Provided	to PSI	
SIEVE ANALY	SIS DATA/RE	SULTS	· ·	TEST N	ETHOD
Original "Wet" Sa	mple Mass (OSN	/i) + Pan:	996.3		· · ·
Pan Weight:		· · · ·	93.2	ASTM	1 C136
Original "Wet" Sa	mple Mass (OSM	/):	903.1		
Total "Drv" Samp	le Mass (TSM) +	Pan:	820.4		
Pan Weight:			93.2		
Total "Drv" Samp	le Mass (TSM):		727.2		
Total "Drv" Washe	d Sample Mass (T	WM) + Pan Wt.	182.6	· · .	
Pan Weight:	· · · · · · · · · · · · · · · · · · ·		93.2		
Total "Drv" Wash	ed Sample Mass	(TWM), grams	89.4		•
Sieve Size	Individual	Cumulative	Percent	Percent	
metric (English)	Weight (g)	Weight (g)	Retained (%)	Passing (%)	Specification
37.5 (1 1/2)	0.0	0.0	0.0	100.0	NP
25 (1)	0.0	0.0	0.0	100.0	I NP
19 (3/4)	0.0	0.0	0.0	100.0	NP
16 (5/8)	0.0	0.0	0.0	100.0	NP
12.5 (1/2)	0.0	0.0	0.0	100.0	NP.
9.5 (3/8)	0.0	0.0	0.0	100.0	NP
6.3 (1/4)	0.4	0.4	0.1	99.9	NP
4.75 (4)	1.2	1.6	0.2	99.8	NP
2.36 (8)	3.0	4.6	0.6	99.4	NP
1.18 (16)	2.1	6.7	0.9	99.1	NP
0.6 (30)	5.3	12.0	1.7	98.3	NP
0.425 (40)	0.0	12.0	1.7	98.3	<u>NP</u>
0.3 (50)	7.9	19.9	2.7	97.3	NP
0.15 (100)	27.4	47.3	6.5	93.5	NP
0.075 (200)	39.3	86.6	11.9	88.1	NP
Dop	بد بر ان نم به عندی نو و و و بر بر به و بر م مو 			1	

.

	SIEV	E ANALYS	SIS WORKSI	HEET	
CLIENT:	CWLP Environmenta	l Health & Safet	PROJECT:	Piezometer CWLP Ash F	nstallation onds
	A == 1 26 2010	an an An Anna an Anna Anna Anna Anna Ann		Springfield, I	L
DATE.	April 26, 2010		PSI REPORT N	0.0020522-1	Page 2 of 8
GENERAL S	AMPLE INFO	RMATION			
SAMPLE TYPE	: Clayey SILT, S	ome Fine to	SAMPLED BY:	PSI	
			DATE SAMPLE	D: 4/21/2010	
SAMPLE SOUF	RCE: AP-1, 10'-1	5'	TESTED BY:	Don Reed	(
			DATE TESTED:	April 26, 201	D
SPECIFICATIO	NS: ASTM C136	•	NOTES/OBSER	VATIONS	
· · · · · · · · · · · · · · · · · · ·			NP=Not Provided	to PSI	
SIEVE ANAL	YSIS DATA/R	ESULTS		TEST	METHOD
Original "Wet" S	ample Mass (OS	SM) + Pan:	1030.6		
Pan Weight:	•		93.5	AST	M C136
Original "Wet" S	ample Mass (OS	SM):	937.1	1	
Total "Dry" Sam	ple Mass (TSM)	+ Pan:	814.4	-1	
Pan Weight:		· ·	93.5		•
Total "Dry" Sam	ple Máss (TSM):	· ·	720.9	-	
Total "Dry" Washe	ed Sample Mass (TWM) + Pan Wt.	247.0	1.	
Pan Weight:			93.5	1.	
Total "Dry" Wash	ned Sample Mas	s (TWM), grams	153.5		· ·
Sieve Size	Individual	Cumulative	Percent	Percent	
metric (English)	Weight (g)	Weight (g)	Retained (%)	Passing (%)	Specification
37.5 (1 1/2)	0.0	0.0	0.0	100.0	NP
25 (1)	0.0	0.0	0.0	100.0	NP
19 (3/4)	0.0	0.0	0.0	100.0	NP
16 (5/8)	0.0	0.0	0.0	100.0	NP
12.5 (1/2)	0.0	0.0	0.0	100.0	NP
9.5 (3/8)	0.9	0.9	0.1	99.9	NP
6.3 (1/4)	0.9	1.8	0.2	99.8	NP
4./5(4)	3.1	4.9	0.7	99.3	NP
2.36 (8)	21.1	26.0	3. 6	96.4	NP
1.18 (16)	40.7	66.7	9,3	90.7	NP
0.6 (30)	31.2	97.9	13.6	86.4	NP
0.425 (40)	0.0	97.9	13.6	86.4	NP
0.3 (50)	14.4	112.3	15.6	84.4	NP
0.15(100)	14.7	127.0	17.6	. 82.4	NP
0.0/5 (200) Pop	25.6	152.6	21.2	78.8	NP
ran	1. A.				

.

	SIEVE	E ANALYSI	S WORKSH	EET	
CLIENT:	CWLP		PROJECT:	Piezometer Ir	nstallation
· · ·	Environmental	Health & Safety		CWLP Ash P	onds
DATE:	April 26, 2010	. •	PSI REPORT NO	. 0020522-1	- Page 3 of 8
GENERAL SA					
SAMPLE TYPE:	Clayey SILT, Sc	me Fine to	SAMPLED BY:	PSI	
Coarse Sand			DATE SAMPLED	4/21/2010	
SAMPLE SOUR	CE: AP-2, 3'-7'	·	TESTED BY:	Don Reed	· · · · · · · · · · · · · · · · · · ·
	·		DATE TESTED:	April 26, 2010) .
SPECIFICATION	NS: ASTM C136		NOTES/OBSERV	ATIONS	• • • • • • • • • • • • • • • • • • •
			NP=Not Provided	to PSI	
SIEVE ANAL	SIS DATA/RI	ESULTS		TEST	NETHOD
Original "Wet" Sa	ample Mass (OS	M) + Pan:	1706.4		
Pan Weight:			90.7	ASTN	A C136
Original "Wet" Sa	ample Mass (OS	M):	1615.7		• •
Total "Dry" Sam	ole Mass (TSM) ·	+ Pan:	1381.0		
Pan Weight:			90.7		
Total "Dry" Samp	ole Mass (TSM):		1290.3		
Total "Dry" Washe	d Sample Mass (TWM) + Pan Wt.	420.6		
Pan Weight:	·		90.7		•
Total "Dry" Wash	ed Sample Mass	s (TWM), grams	329.9		
Sleve Size	Individual	Cumulative	Percent	Percent	
metric (English)	Weight (g)	Weight (g)	Retained (%)	Passing (%)	Specification
37.5 (1 1/2)	0.0	0.0	.0.0	100.0	NP
25 (1)	0.0	0.0	0.0	100.0	NP
19 (3/4)	0.0	0.0	0.0	100.0	NP
16 (5/8)	0.0	0.0	0.0	100.0	NP
12.5 (1/2)	0.0	0.0	0.0	100.0	NP
9.5 (3/8)	3.5	3.5	0.3	99.7	NP
6.3 (1/4)	2.3	5.8	0.4	99.6 .	<u>NP</u>
4.75 (4)	<u> </u>	8.5	0.7	99.3	NP
2.36 (8)	6.6	15.1	1.2	98.8	NP
1.18 (16)	7.0	22.1	1.7	98.3	NP
0.6 (30)	8.0	30.1	2.3	97.7	NP
0.425 (40)	0.0	30.1	2.3	97.7	NP
0.3 (50)	18.1	48.2	3.7	96.3	NP
0.15 (100)	119.7	167.9	13.0	87.0	NP
0.075 (200)	156.2	324.1	25.1	74.9	NP
Pan					

SIEVE ANALYSIS WORKSHEET CWLP CLIENT: PROJECT: **Piezometer Installation Environmental Health & Safety** CWLP Ash Ponds Sprinafield, IL DATE: April 26, 2010 PSI REPORT NO. 0020522-1 Page 4 of 8 **GENERAL SAMPLE INFORMATION** SAMPLE TYPE: Clayey SILT, Some Fine to SAMPLED BY: PSI Coarse Sand DATE SAMPLED: 4/21/2010 SAMPLE SOURCE: AP-2, 9'-16' TESTED BY: Don Reed DATE TESTED: April 26, 2010 SPECIFICATIONS: ASTM C136 NOTES/OBSERVATIONS NP=Not Provided to PSI SIEVE ANALYSIS DATA/RESULTS **TEST METHOD** Original "Wet" Sample Mass (OSM) + Pan: 1461.6 Pan Weight: 173.0 ASTM C136 Original "Wet" Sample Mass (OSM): 1288.6 Total "Dry" Sample Mass (TSM) + Pan: 1178.1 Pan Weight: 173.0 Total "Dry" Sample Mass (TSM): 1005.1 Total "Dry" Washed Sample Mass (TWM) + Pan Wt. 319.2 Pan Weight: 173.0 Total "Dry" Washed Sample Mass (TWM), grams 146.2 Individual **Sieve Size** Cumulative Percent Percent metric (English) Weight (g) Weight (g) Retained (%) Passing (%) Specification 37.5 (1 1/2) 0.0 0.0 100.0 NP 0.0 25 (1) 0.0 0.0 0.0 NP 100.0 19 (3/4) 0.0 0.0 0:0 100.0 NP 16 (5/8) 0.0 0.0 0.0 100.0 NP 12.5 (1/2) 0.0 0.0 0.0 NP 100.0 9.5 (3/8) 0.0 0.0 0.0 NP 100.0 6.3 (1/4) 0.8 0.8 0.1 NP 99.9 1.2 4.75 (4) 2.0 0.2 99.8 NP 2.36 (8) 1.5 3.5 NP 0.3 99.7 1.18 (16) 2.8 6.3 0.6 99.4 NP 0.6 (30) 5.7 12.0 1.2 98.8 NP 0.425 (40) 0.0 12.0 1.2 98.8 NP 0.3 (50) 7.2 NP 19.2 1.9 98.1 0.15 (100) 42.1 61.3 6.1 NP 93.9

Pan

0.075 (200)

82.8

14.3

85.7

NP

144.1

SIEVE ANALYSIS WORKSHEET CLIENT: CWLP PROJECT: **Piezometer Installation Environmental Health & Safety** CWLP Ash Ponds Springfield, IL DATE: April 26, 2010 PSI REPORT NO. 0020522-1 Page 5 of 8 **GENERAL SAMPLE INFORMATION** SAMPLE TYPE: Clayey SILT, Some Fine to SAMPLED BY: PSI Coarse Sand, Trace Subround Gravel DATE SAMPLED: 4/21/2010 SAMPLE SOURCE: AP-3, 3'-6' TESTED BY: Don Reed DATE TESTED: April 26, 2010 SPECIFICATIONS: ASTM C136 NOTES/OBSERVATIONS NP=Not Provided to PSI SIEVE ANALYSIS DATA/RESULTS **TEST METHOD** Original "Wet" Sample Mass (OSM) + Pan: 816.4 Pan Weight: 94.6 ASTM C136 Original "Wet" Sample Mass (OSM): 721.8 Total "Dry" Sample Mass (TSM) + Pan: 663.7 Pan Weight: 94.6 Total "Dry" Sample Mass (TSM): 569.1 Total "Dry" Washed Sample Mass (TWM) + Pan Wt. 195.2 Pan Weight: 94.6 Total "Dry" Washed Sample Mass (TWM), grams 100.6 Sieve Size Individual Cumulative Percent Percent metric (English) Weight (g) Weight (g) Retained (%) Passing (%) Specification 37.5 (1 1/2) 0.0 0.0 0.0 100.0 NP 25 (1) 0.0 0.0 0.0 100.0 NP 19 (3/4) 0.0 0.0 0.0 100.0 NP 16 (5/8) 0.0 0.0 0.0 100.0 NP 12.5 (1/2) 0.0 0.0 0.0 100.0 NP 9.5 (3/8) 2.5 2.5 ŇΡ 0.4 99.6 6.3 (1/4) 0.4 2.9 0.5 99.5 NP 4.75 (4) 0.4 3.3 0.6 NP 99.4 2.36 (8) 1.3 4.6 0.8 99,2 NP 1.18 (16) 3.6 8.2 1.4 NP 98.6 0.6 (30) 7.6 15.8 2.8 NP 97.2 0.425 (40) 0.0 15.8 2.8 97.2 NP 0.3 (50) 10.2 26.0 4.6 NP 95.4 0.15 (100) 31.7 57.7 10.1 89.9 NP 0.075 (200) 41.5 99.2 17.4 NP 82.6 Pan

SIEVE ANALYSIS WORKSHEET

CLIENT:	CWLP Environmental	Health & Safety	PROJECT:	Piezometer In CWLP Ash P	nstallation onds
DATE:	April 26, 2010	. *	PSI REPORT NO	. 0020522-1	- Page 6 of 8
GENERAL SA		RMATION		· · · · · · · · · · · · · · · · · · ·	
SAMPLE TYPE:	Clayey SILT, So	me Fine to	SAMPLED BY:	PSI	
Coarse Sand	· ·		DATE SAMPLED:	4/21/2010	
SAMPLE SOUR	CE: AP-3, 10'-15	, ·	TESTED BY:	Don Reed	······································
			DATE TESTED:	April 26, 2010) .
SPECIFICATION	NS: ASTM C136	······································	NOTES/OBSERV	ATIONS	· · · · · · · · · · · · · · · · · · ·
			NP=Not Provided	to PSI	
SIEVE ANAL	YSIS DATA/R	ESULTS	· 、	TEST	METHOD
Original "Wet" Sa	ample Mass (OS	M) + Pan:	1010.5		
Pan Weight:			104.2	AST	M C136
Original "Wet" Sa	ample Mass (OS	M):	906.3		
Total "Dry" Sam	ole Mass (TSM) ·	+ Pan:	812.2		
Pan Weight:	·		104.2		• •
Total "Dry" Sam	ole Mass (TSM):		708.0		1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -
Total "Dry" Washe	d Sample Mass (TWM) + Pan Wt.	250.7		
Pan Weight:	····		104.2		
Total "Dry" Wash	ed Sample Mass	s (TWM), grams	146.5	·	
Sieve Size	Individual	Cumulative	Percent	Percent	
metric (English)	Weight (g)	Weight (g)	Retained (%)	Passing (%)	Specification
37.5 (1 1/2)	0.0	0.0	0.0	100.0	NP
25 (1)		0.0	0.0	100.0	NP
19 (3/4)	0.0	0.0	0.0	100.0	
10 (5/6)	0.0	0,0	0.0	100.0	NP
0.5 (2/2)	0.0	0.0	0.0	100.0	
<u>9.3 (3/6)</u> 6.3 (1/4)	1.8	1 0	0.0	100.0	ND
A 75 (A).	0.4	· · · ·	0.3	99.7	- INF
2 36 (8)	3 4	<u> </u>	0.5	.99.7	ND
1 18 /16	55	11 1	U.D 1 G	99.Z	ND
0.6 (30)	7 1	18.5	2.6	90.4	ND
0.425 (40)	0.0	18.5	2.0	97.4	ND
0.3 (50)	16.6	35.1	5.0	97. 4 95.0	NP
0.15 (100)	52.0	87 1	12 3	87 7	NP
0.075 (200)	56.8	143.9	20.3	79.7	NP
Pan					

	SIEV	E ANALYS	IS WORKSH	EET	•
CLIENT:	CWLP Environmental	Health & Safety	PROJECT:	Piezometer I CWLP Ash P Springfield, II	nstallation Ponds L
DATE:	April 26, 2010	· · ·	PSI REPORT NO	. 0020522-1	Page 7 of 8
GENERAL S	AMPLE INFO	RMATION			
SAMPLE TYPE	: Composite of F	LY ASH and	SAMPLED BY:	PSI	
Slity CLAY, With	h Fine to Coarse	Sand, Trace	DATE SAMPLED	4/20/2010	· ·
	· · · · · · · · · · · · · · · · · · ·		TESTED BY:	Don Reed	
SAMPLE SOUR	CE: AP-4, 18'-2:	3'	DATE TESTED:	April 26, 2010	D ,
SPECIFICATIO	NS: ASTM C136		NOTES/OBSERV	ATIONS	
<u></u>			NP=Not Provided	to PSI	
SIEVE ANAL	YSIS DATA/R	ESULTS		TEST	METHOD
Original "Wet" S	ample Mass (OS	M) + Pan: 🚿	1931.9		
Pan Weight:		· · · · · · · · · · · · · · · · · · ·	147.6	AST	M C136
Original "Wet" S	ample Mass (OS	M):	1784.3		
Total "Dry" Sam	ple Mass (TSM)	+ Pan:	1596.1		
Pan Weight:			147.6		
Total "Dry" Sam	ole Mass (TSM):	· · · · · · · · · · · · · · · · · · ·	1448.5		
Total "Dry" Washe	ed Sample Mass (TWM) + Pan Wt.	752.6	·	
Pan Weight:		-	147.6		
Total "Dry" Wash	ed Sample Mass	s (TWM), grams	605.0		· · · · ·
Sieve Size	Individual	Cumulative	Percent	Percent	-
metric (English)	Weight (g)	Weight (g)	Retained (%)	Passing (%)	Specification
37.5 (1 1/2)	0.0	0.0	0.0	100.0	NP
20 (1)	0.0	0.0	0.0	100.0	NP
19 (3/4)	0.0	0.0	0.0	100.0	NP
10 (5/6)	0.2	8.2	5.6	94.4	NP
0.5 (3/8)	2.5	8.2	0.6	99.4	NP
6.3 (1/A)	12.0	10.7	0.7	99.3	NP
A 75 (A)	10.9	23.0	1.6	98.4	NP
2 36 (8)	52.2	33.8	2.3	97.7	NP
1 18 (16)	141 2	00.0	5.9	94.1	. NP
	122.2	230.3	15.9	84.1	NP
0.0 (30)	0.0	302.5	25.0	/5.0	NP
0.3 (50)	110.4	302.5	25.0	/5.0	NP
0.5 (30)	75 1	412.9	32,6	67.4	NP
0.075 (200)	70.1 53 5		31.8	62.2	NP
Pan	00.0		41.5	58.5	NP

SIEVE ANALYSIS WORKSHEET

CLIENT:	CWLP		PROJECT:	Piezometer In	stallation
	Environmental H	lealth & Safety		CWLP Ash Po	onds
	· · · · · · · · · · · ·	•	DOL DEDODT NO	Springfield, IL	Dava 0 of 9
DATE:	April 26, 2010		PSI REPORT NO.	0020522-1	Page 6 01 6
GENERAL SA	MPLE INFOR	MATION	•		· · · · · · · · · · · · · · · · · · ·
SAMPLE TYPE:	Clayey SILT Wit	h Fine to	SAMPLED BY:	PSI	
Coarse Sand, Tra	ace Subround Gr	avel	DATE SAMPLED:	4/20/2010	
SAMPLE SOURC	CE: AP-4, 45'-55'		TESTED BY:	Don Reed	· · · · · · ·
			DATE TESTED:	April 26, 2010	
SPECIFICATION	IS: ASTM C136	· · ·	NOTES/OBSERV/	ATIONS	
· .			NP=Not Provided	to PSI	
SIEVE ANALY	SIS DATA/RE	SULTS		TEST N	NETHOD
Original "Wet" Sa	mple Mass (OSM	M) + Pan:	1855.4		•
Pan Weight:	· ,		99.7	ASTN	1 C136
Original "Wet" Sa	mple Mass (OS	VI):	1755.7		
Total "Dry" Samp	ie Mass (TSM) +	· Pan:	1509.0		
Pan Weight:			99.7		ана страна с Страна страна страна Страна страна
Total "Dry" Samp	ie Mass (TSM):		1409.3		
Total "Dry" Washe	d Sample Mass (1	WM) + Pan Wt.	584.6	1. S.	
Pan Weight:			99.7		
Total "Dry" Wash	ed Sample Mass	(TWM), grams	484.9		
Sieve Size	Individual	Cumulative	Percent	Percent	
metric (English)	Weight (g)	Weight (g)	Retained (%)	Passing (%)	Specification
37.5 (1 1/2)	0.0	0.0	0.0	100.0	NP
25 (1)	0.0	0.0	0.0	100.0.	NP
19 (3/4)	0.0	0,0	• 0.0	100.0	NP
16 (5/8)	0.0	0.0	0.0	100.0	NP
12.5 (1/2)	0.0	0.0	0.0	100.0	
9.5 (3/8)	2.7	2.7	0.2	99.8	NP
6.3 (1/4)	6.7	9.4	0.7	99.3	NP
4.75 (4)	11.0	20.4	1.4	98.6	
2.36 (8)	31.4	<u>51.8</u>	3.7	96.3	NP
1.18 (16)	35.3	87.1	6.2	93.8	NP
0.6 (30)	55.9	143.0	10.1	89.9	NP
0.425 (40)	0.0	143.0	10.1	89.9	NP
0.3 (50)	162.8	305.8	21.7	78.3	NP
0.15 (100)	94.7	400.5	28,4	71.6	NP
0.075 (200)	82.5	483.0	34.3	.65.7	<u>NP</u>
Pan , 🖻					

.

.

		BΥ							
	REVISIONS	DESCRIP TION							
		NO. DATE			6	Ű			-
			ENGINEERING, INC	3300 GINGER CREEK DRIVE	SPRINGFIELD, ILLINOIS 62711-723	PH (217) 787-2334 FAX (217) 787-9495	PONTIAC, IL • LOMBARD, IL • INDIANAPOLIS, IN • WARRENTON, MC	PROFESSIONAL DESIGN ENGINEERING AND LAND SURVEYING FIRM #184-00154	ALTAVED DI. TMY DESIGNED DI. TMY DIAMIN DI. 1940
80		DALLMAN ASH POND CROSS-SECTION AT STA. 10+00			PLANS PREPARED FOR	CITY WATER LICHT & DOMER		SPRINGFIELD, SANGAMON COUNTY, ILLINOIS	
16 FEET	L	DA TI PRO	E: OC	TOE	BER	20	016		teering, Inc.
	<u> </u>	SHEI	1: 57 / X	500 NUN	77, 18E	/00 ; <i>R</i> :		•	© 2016 Andrews Engin

APPENDIX E

USGS Earthquake Hazards Program Probabilistic Seismic Hazard Analysis

APPENDIX F

Lakeside Ash Pond Slope Stability Analysis

APPENDIX F-1

Long-Term Static Slope Stability Analysis

CWLP Lakeside Long Term Static

Report generated using GeoStudio 2012. Copyright © 1991-2014 GEO-SLOPE International Ltd.

File Information

File Version: 8.14 Created By: Karl Finke Last Edited By: Karl Finke Revision Number: 47 Date: 10/3/2016 Time: 2:09:57 PM Tool Version: 8.14.1.10087 File Name: CWLP Lakeside Long Term Section 2.gsz Directory: J:\CWLP Factor of Safety Report\SlopeW\ Last Solved Date: 10/3/2016 Last Solved Time: 2:09:59 PM

Project Settings

Length(L) Units: Feet Time(t) Units: Seconds Force(F) Units: Pounds Pressure(p) Units: psf Strength Units: psf Unit Weight of Water: 62.4 pcf View: 2D Element Thickness: 1

Analysis Settings

CWLP Lakeside Long Term Static

Description: CWLP Lakeside Kind: SLOPE/W Method: Morgenstern-Price Settings Side Function Interslice force function option: Half-Sine PWP Conditions Source: Piezometric Line Apply Phreatic Correction: Yes Use Staged Rapid Drawdown: No Slip Surface Direction of movement: Right to Left Use Passive Mode: No Slip Surface Option: Entry and Exit Critical slip surfaces saved: 1 Resisting Side Maximum Convex Allge: 1 Resisting Side Maximum Convex Angle: 5 ° Optimize Critical Slip Surface Location: No Tension Crack Tension Crack Option: (none) F of S Distribution F of S Calculation Option: Constant Advanced Number of Slices: 30 F of S Tolerance: 0.001 Minimum Slip Surface Depth: 0.1 ft Search Method: Root Finder Tolerable difference between starting and converged F of S: 3 Maximum iterations to calculate converged lambda: 20 Max Absolute Lambda: 2

Materials

Brn Gry Sandy Silty Clay Model: Mohr-Coulomb Unit Weight: 120 pcf Cohesion': 145 psf Phi': 32 ° Phi-B: 0 ° Pore Water Pressure Piezometric Line: 1

Brn Silty Clay

Model: Mohr-Coulomb Unit Weight: 120 pcf Cohesion': 190 psf Phi': 32 ° Phi-B: 0 ° Pore Water Pressure Piezometric Line: 1

Yel Brn Gry VF Sandy Silt

Model: Mohr-Coulomb Unit Weight: 120 pcf Cohesion': 190 psf Phi': 32 ° Phi-B: 0 ° Pore Water Pressure Piezometric Line: 1

Gray Clayey Shale

Model: Mohr-Coulomb

Unit Weight: 130 pcf Cohesion': 2,000 psf Phi': 0 ° Phi-B: 0 ° Pore Water Pressure Piezometric Line: 1

Ash

Model: Mohr-Coulomb Unit Weight: 100 pcf Cohesion': 0 psf Phi': 25 ° Phi-B: 0 ° Pore Water Pressure Piezometric Line: 1

Slip Surface Entry and Exit

Left Projection: Range Left-Zone Left Coordinate: (-10, 535) ft Left-Zone Right Coordinate: (22, 542) ft Left-Zone Increment: 4 Right Projection: Range Right-Zone Left Coordinate: (70, 565) ft Right-Zone Right Coordinate: (139, 565) ft Right-Zone Increment: 4 Radius Increments: 4

Slip Surface Limits

Left Coordinate: (-20, 535) ft Right Coordinate: (145, 565) ft

Piezometric Lines

Piezometric Line 1

Coordinates

	X (ft)	Y (ft)
Coordinate 1	-20	533
Coordinate 2	15	535
Coordinate 3	20	540
Coordinate 4	70	557
Coordinate 5	75	560
Coordinate 6	80	565
Coordinate 7	145	565

Points

	X (ft)	Y (ft)
Point 1	15	535
Point 2	35	555
Point 3	50	555
Point 4	60	545
Point 5	70	535
Point 6	70	565
Point 7	80	565
Point 8	95	550
Point 9	145	565
Point 10	-20	535
Point 11	145	535
Point 12	-20	532
Point 13	145	532
Point 14	-20	525
Point 15	145	525
Point 16	-20	515
Point 17	145	515

Regions

	Material	Points	Area (ft²)
Region 1	Brn Gry Sandy Silty Clay	1,2,3,4,5	700
Region 2	Brn Gry Sandy Silty Clay	3,6,7,8,4	550
Region 3	Brn Silty Clay	10,1,5,11,13,12	495
Region 4	Yel Brn Gry VF Sandy Silt	12,14,15,13	1,155
Region 5	Ash	8,4,5,11,9,7	2,000
Region 6	Gray Clayey Shale	14,16,17,15	1,650

Current Slip Surface

Slip Surface: 33 F of S: 1.532 Volume: 1,258.2941 ft³ Weight: 150,210.74 lbs Resisting Moment: 5,434,428.4 lbs-ft Activating Moment: 3,545,823.9 lbs-ft Resisting Force: 68,187.197 lbs Activating Force: 44,512.413 lbs F of S Rank: 1 Exit: (-1.2751263, 535) ft Entry: (87.25, 565) ft Radius: 73.560778 ft Center: (24.754863, 603.80136) ft
Slip Slices

Electronic Filing: Received, Clerk's Office 08/27/2020

	X (ft)	Y (ft)	PWP (nsf)	Base Normal Stress	Frictional Strength	Cohesive Strength
	Λ (10)	1 (10)		(psf)	(psf)	(psf)
Slice 1	-0.16048362	534.59869	-28.921787	116.63294	72.880347	190
Slice 2	2.2555676	533.77922	30.633885	239.91856	130.77557	190
Slice 3	4.8583846	532.99536	88.638254	357.95512	168.28786	190
Slice 4	7.4612017	532.31483	140.21555	463.62052	202.08585	190
Slice 5	10.321958	531.68791	189.37551	562.23057	232.9857	190
Slice 6	13.440653	531.13303	234.97122	647.75213	257.93414	190
Slice 7	16.25	530.74473	343.52879	872.41907	330.48732	190
Slice 8	18.75	530.49682	514.99863	1,237.8844	451.70913	190
Slice 9	21.5	530.32797	569.52187	1.633.4497	664.81587	190
Slice 10	24.5	530.25632	630.58214	2,026.2219	872.09255	190
Slice 11	27.5	530.30715	684.79174	2,374.6858	1,055.963	190
Slice 12	30.5	530.48071	732.13642	2,676.6103	1,215.0422	190
Slice 13	33.5	530.77789	772.56714	2,932.1543	1,349.4598	190
Slice 14	36.436779	531.18867	805.44064	2,961.7079	1,347.3854	190
Slice 15	39.310336	531.70991	830.93376	2,787.6141	1,222.6696	190
Slice 16	42.289263	532.3786	850.1832	2,595.7963	1,090.7801	190
Slice 17	45.373558	533.20762	862.4684	2,390.7241	954.96017	190
Slice 18	48.457853	534.1831	866.56169	2,182.7153	822.42405	190
Slice 19	50.392426	534.85408	865.82212	2,074.5141	755.2746	190
Slice 20	52.183471	535.56217	860.27695	2,045.1601	740.39712	145
Slice 21	55.186567	536.85367	845.14961	1,991.516	716.32925	145
Slice 22	58.395522	538.40841	819.21351	1,925.9735	691.58041	145
Slice 23	61.820519	540.29639	778.74635	1,813.4119	646.53076	145
Slice 24	65.230778	542.40704	725.54379	1,765.7584	485.06005	0
Slice 25	68.410259	544.62796	661.78492	1,717.5015	492.28874	0
Slice 26	70.482325	546.18359	509.56053	1,647.8538	530.79489	0
Slice 27	72.982325	548.32026	480.3485	1,367.3352	554.25078	145
Slice 28	76.25	551.30019	310.43404	1,075.0936	477.81232	145
Slice	78.75	553.87819	308.00034	862.30889	346.37042	145

CWLP Lakeside Long Term Static

Electronic Filing: Received, Clerk's Office 08/27/2020

29	EI	ectronic F	iling: Rece	ived, Clerk's Offic	e 08/27/2020	
Slice 30	82.16908	557.94599	440.16994	557.72891	73.458995	145
Slice 31	85.79408	562.83092	135.35062	184.12653	22.744581	0

APPENDIX F-2

Short-Term Static Slope Stability Analysis

Electronic Filing: Received, Clerk's Office 08/27/2020 CWLP Lakeside Short Term Static

Report generated using GeoStudio 2012. Copyright @ 1991-2014 GEO-SLOPE International Ltd.

File Information

File Version: 8.14 Created By: Karl Finke Last Edited By: Karl Finke Revision Number: 48 Date: 10/3/2016 Time: 2:12:27 PM Tool Version: 8.14.1.10087 File Name: CWLP Lakeside Short Term Section 2.gsz Directory: J:\CWLP Factor of Safety Report\SlopeW\

Project Settings

Length(L) Units: Feet Time(t) Units: Seconds Force(F) Units: Pounds Pressure(p) Units: psf Strength Units: psf Unit Weight of Water: 62.4 pcf View: 2D Element Thickness: 1

Analysis Settings

CWLP Lakeside Short Term Static Description: CWLP Lakeside

Kind: SLOPE/W Method: Morgenstern-Price Settings Side Function Interslice force function option: Half-Sine PWP Conditions Source: Piezometric Line Apply Phreatic Correction: Yes Use Staged Rapid Drawdown: No Slip Surface Direction of movement: Right to Left Use Passive Mode: No Slip Surface Option: Entry and Exit Critical slip surfaces saved: 1 Resisting Side Maximum Convex Angle: 1 ° Driving Side Maximum Convex Angle: 5 ° Optimize Critical Sub Subace Location No Tension Crack Tension Crack Option: (none) F of S Distribution F of S Calculation Option: Constant Advanced Number of Slices: 30 F of S Tolerance: 0.001 Minimum Slip Surface Depth: 0.1 ft Search Method: Root Finder Tolerable difference between starting and converged F of S: 3 Maximum iterations to calculate converged lambda: 20 Max Absolute Lambda: 2

Materials

Brn Gry Sandy Silty Clay

Model: Mohr-Coulomb Unit Weight: 120 pcf Cohesion': 1,400 psf Phi': 0° Phi-B: 0° Pore Water Pressure Piezometric Line: 1

Brn Silty Clay

Model: Mohr-Coulomb Unit Weight: 120 pcf Cohesion': 1,800 psf Phi': 0° Phi-B: 0° Pore Water Pressure Piezometric Line: 1

Yel Brn Gry VF Sandy Silt

Model: Mohr-Coulomb Unit Weight: 120 pcf Cohesion': 1,000 psf Phi': 0° Phi-B: 0° Pore Water Pressure Piezometric Line: 1

Gray Clayey Shale

Model: Mohr-Coulomb Unit Weight: 130 pcf Cohesion': 2,000 psf

Phi': 0 ° Phi-B: 0 ° Pore Water Pressure Piezometric Line: 1

Ash

Model: Mohr-Coulomb Unit Weight: 100 pcf Cohesion': 0 psf Phi': 15 ° Phi-B: 0 ° Pore Water Pressure Piezometric Line: 1

Slip Surface Entry and Exit

Left Projection: Range Left-Zone Left Coordinate: (-14, 535) ft Left-Zone Right Coordinate: (23, 543) ft Left-Zone Increment: 4 Right Projection: Range Right-Zone Left Coordinate: (70, 565) ft Right-Zone Right Coordinate: (142, 565) ft Right-Zone Increment: 4 Radius Increments: 4

Slip Surface Limits

Left Coordinate: (-20, 535) ft Right Coordinate: (145, 565) ft

Piezometric Lines

Piezometric Line 1

Coordinates

	X (ft)	Y (ft)
Coordinate 1	-20	533
Coordinate 2	15	535
Coordinate 3	22	542
Coordinate 4	70	557
Coordinate 5	75	560
Coordinate 6	80	565
Coordinate 7	145	565

Points

	X (ft)	Y (ft)
Point 1	15	535
Point 2	35	555
Point 3	50	555
Point 4	60	545
Point 5	70	535
Point 6	70	565
Point 7	80	565
Point 8	95	550
Point 9	145	565
Point 10	-20	535
Point 11	145	535
Point 12	-20	532
Point 13	145	532
Point 14	-20	525
Point 15	145	525
Point 16	-20	515
Point 17	145	515

Regions

	Material	Points	Area (ft²)
Region 1	Brn Gry Sandy Silty Clay	1,2,3,4,5	700
Region 2	Brn Gry Sandy Silty Clay	3,6,7,8,4	550
Region 3	Brn Silty Clay	10,1,5,11,13,12	495
Region 4	Yel Brn Gry VF Sandy Silt	12,14,15,13	1,155
Region 5	Ash	8,4,5,11,9,7	2,000
Region 6	Gray Clayey Shale	14,16,17,15	1,650

APPENDIX F-3

Lakeside Seismic Slope Stability Analysis

Electronic Filing: Received, Clerk's Office 08/27/2020 CWLP Lakeside Short Term Seismic

Report generated using GeoStudio 2012. Copyright $\ensuremath{\mathbb{C}}$ 1991-2014 GEO-SLOPE International Ltd.

File Information

File Version: 8.14 Created By: Karl Finke Last Edited By: Karl Finke Revision Number: 52 Date: 10/3/2016 Time: 2:14:02 PM Tool Version: 8.14.1.10087 File Name: CWLP Lakeside Short Term Seismic Section 2.gsz Directory: J:\CWLP Factor of Safety Report\SlopeW\ Last Solved Date: 10/3/2016 Last Solved Time: 2:14:06 PM

Project Settings

Length(L) Units: Feet Time(t) Units: Seconds Force(F) Units: Pounds Pressure(p) Units: psf Strength Units: psf Unit Weight of Water: 62.4 pcf View: 2D Element Thickness: 1

Analysis Settings

CWLP Lakeside Short Term Seismic

Description: CWLP Lakeside Kind: SLOPE/W Method: Morgenstern-Price Settings Side Function Interslice force function option: Half-Sine PWP Conditions Source: Piezometric Line Apply Phreatic Correction: Yes Use Staged Rapid Drawdown: No Slip Surface Direction of movement: Right to Left Use Passive Mode: No Slip Surface Option: Entry and Exit Critical slip surfaces saved: 1 Resisting Side Maximum Convex Angle: 1 Resisting Side Maximum Convex Angle: 5° Optimize Critical Slip Surface Location: No Tension Crack Tension Crack Option: (none) F of S Distribution F of S Calculation Option: Constant Advanced Number of Slices: 30 F of S Tolerance: 0.001 Minimum Slip Surface Depth: 0.1 ft Search Method: Root Finder Tolerable difference between starting and converged F of S: 3 Maximum iterations to calculate converged lambda: 20 Max Absolute Lambda: 2

Materials

Brn Gry Sandy Silty Clay Model: Mohr-Coulomb Unit Weight: 120 pcf Cohesion': 1,400 psf Phi': 0 ° Phi-B: 0 ° Pore Water Pressure Piezometric Line: 1

Brn Silty Clay

Model: Mohr-Coulomb Unit Weight: 120 pcf Cohesion': 1,800 psf Phi': 0° Phi-B: 0° Pore Water Pressure Piezometric Line: 1

Yel Brn Gry VF Sandy Silt

Model: Mohr-Coulomb Unit Weight: 120 pcf Cohesion': 1,000 psf Phi': 0° Phi-B: 0° Pore Water Pressure Piezometric Line: 1

Gray Clayey Shale

Model: Mohr-Coulomb

Unit Weight: 130 pcf Cohesion': 2,000 psf Phi': 0 ° Phi-B: 0 ° Pore Water Pressure Piezometric Line: 1

Ash

Model: Mohr-Coulomb Unit Weight: 100 pcf Cohesion': 0 psf Phi': 15 ° Phi-B: 0 ° Pore Water Pressure Piezometric Line: 1

Slip Surface Entry and Exit

Left Projection: Range Left-Zone Left Coordinate: (-16, 535) ft Left-Zone Right Coordinate: (24, 544) ft Left-Zone Increment: 4 Right Projection: Range Right-Zone Left Coordinate: (70, 565) ft Right-Zone Right Coordinate: (139, 565) ft Right-Zone Increment: 4 Radius Increments: 4

Slip Surface Limits

Left Coordinate: (-20, 535) ft Right Coordinate: (145, 565) ft

Piezometric Lines

Piezometric Line 1

Coordinates

	X (ft)	Y (ft)
Coordinate 1	-20	533
Coordinate 2	15	535
Coordinate 3	22	542
Coordinate 4	70	557
Coordinate 5	75	560
Coordinate 6	80	565
Coordinate 7	145	565

Seismic Coefficients

Horz Seismic Coef.: 0.1 Vert Seismic Coef.: 0

Points

	X (ft)	Y (ft)
Point 1	15	535
Point 2	35	555
Point 3	50	555
Point 4	60	545
Point 5	70	535
Point 6	70	565
Point 7	80	565
Point 8	95	550
Point 9	145	565
Point 10	-20	535
Point 11	145	535
Point 12	-20	532
Point 13	145	532
Point 14	-20	525
Point 15	145	525
Point 16	-20	515
Point 17	145	515

Regions

	Material	Points	Area (ft²)
Region 1	Brn Gry Sandy Silty Clay	1,2,3,4,5	700
Region 2	Brn Gry Sandy Silty Clay	3,6,7,8,4	550
Region 3	Brn Silty Clay	10,1,5,11,13,12	495
Region 4	Yel Brn Gry VF Sandy Silt	12,14,15,13	1,155
Region 5	Ash	8,4,5,11,9,7	2,000
Region 6	Gray Clayey Shale	14,16,17,15	1,650

Current Slip Surface

Slip Surface: 63 F of S: 1.260 Volume: 1,901.9136 ft³ Weight: 220,860.5 lbs Resisting Moment: 7,130,465.7 lbs-ft Activating Moment: 5,657,637.6 lbs-ft Resisting Force: 85,224.85 lbs Activating Force: 67,622.745 lbs F of S Rank: 1

Exit: (5.863961, 535) ft Electronic Filing: Received, Clerk's Office 08/27/2020

Entry: (104.5, 565) ft Radius: 79.109148 ft Center: (37.720356, 607.41151) ft

Slip Slices

	X (ft)	Y (ft)	PWP (psf)	Base Normal Stress (psf)	Frictional Strength (psf)	Cohesive Strength (psf)
Slice 1	6.3985031	534.76952	-16.235239	666.78022	0	1,800
Slice 2	8.6540842	533.85892	48.417777	824.15224	0	1,800
Slice 3	12.096162	532.5894	139.61124	1,052.2735	0	1,800
Slice 4	14.408601	531.81762	195.83209	915.79274	0	1,000
Slice 5	16.75	531.15401	349.18995	1,237.5437	0	1,000
Slice 6	20.25	530.27641	622.35204	1,804.3101	0	1,000
Slice 7	23.625	529.58574	734.59908	2,313.1757	0	1,000
Slice 8	26.875	529.06648	821.85486	2,760.4465	0	1,000
Slice 9	30.125	528.68475	901.29201	3,161.9008	0	1,000
Slice 10	33.375	528.43857	973.0241	3,515.7678	0	1,000
Slice 11	36.5	528.32601	1,034.9389	3,637.264	0	1,000
Slice 12	39.5	528.33662	1,087.631	3,541.0214	0	1,000
Slice 13	42.5	528.46119	1,133.8449	3,421.4585	0	1,000
Slice 14	45.5	528.70025	1,173.5497	3,282.3533	0	1,000
Slice 15	48.5	529.05487	1,206.6858	3,127.2166	0	1,000
Slice 16	51.619048	529.55023	1,233.9353	3,039.0174	0	1,000
Slice 17	54.928571	530.21608	1,254.8771	3,014.6722	0	1,000
Slice 18	58.309524	531.04871	1,267.6066	2,974.7747	0	1,000
Slice 19	60.811756	531.75225	1,272.0639	2,922.9997	0	1,000
Slice 20	63.611822	532.68895	1,268.5574	2,836.2034	0	1,800
Slice 21	67.588442	534.18895	1,253.9299	2,627.4289	0	1,800
Slice 22	69.723473	535.0649	1,242.0626	2,534.1139	0	1,400
Slice 23	69.935097	535.15874	1,240.4874	2,588.738	361.26267	0
Slice 24	71.25	535.77273	1,008.3689	2,514.1676	403.47755	0
Slice 25	73.75	536.99738	1,021.0026	2,378.8723	363.8401	0
Slice 26	76.25	538.3342	714.97294	2,233.9803	407.0168	0
	İ		Ì	i	1	1

CWLP Lakeside Short Term Seismic

	Electronic Filing: Received Clerk's Office 08/27/2020					
Slice 27	78.75	539.78986	747.55632	2,103.0434	363.20167	0
Slice 28	81.454318	541.51348	1,465.559	1,988.8949	140.22742	0
Slice 29	84.362954	543.54069	1,339.0611	1,797.0107	122.70723	0
Slice 30	87.27159	545.77183	1,199.8378	1,598.0888	106.71104	0
Slice 31	90.180226	548.23008	1,046.4432	1,386.8062	91.199981	0
Slice 32	92.613771	550.46311	907.10183	416.08203	-0	1,400
Slice 33	95.410831	553.34674	727.16315	925.16796	53.055228	0
Slice 34	99.046499	557.52099	466.69001	618.90263	40.785248	0
Slice 35	102.68217	562.37775	163.62838	227.05533	16.995201	0

APPENDIX G

Dallman Ash Pond Slope Stability Analysis

APPENDIX G-1

Long-Term Static Slope Stability Analysis

Dallman Long Term Static

Report generated using GeoStudio 2012. Copyright © 1991-2014 GEO-SLOPE International Ltd.

File Information

File Version: 8.14 Created By: Karl Finke Last Edited By: Karl Finke Revision Number: 45 Date: 10/3/2016 Time: 2:45:37 PM Tool Version: 8.14.1.10087 File Name: CWLP Dallman Long Term Static.gsz Directory: J:\CWLP Factor of Safety Report\SlopeW\ Last Solved Date: 10/3/2016 Last Solved Time: 2:45:42 PM

Project Settings

Length(L) Units: Feet Time(t) Units: Seconds Force(F) Units: Pounds Pressure(p) Units: psf Strength Units: psf Unit Weight of Water: 62.4 pcf View: 2D Element Thickness: 1

Analysis Settings

Dallman Long Term Static

Kind: SLOPE/W Method: Morgenstern-Price Settings Side Function Interslice force function option: Half-Sine PWP Conditions Source: Piezometric Line Apply Phreatic Correction: No Use Staged Rapid Drawdown: No Slip Surface Direction of movement: Right to Left Use Passive Mode: No Slip Surface Option: Entry and Exit Critical slip surfaces saved: 1 Resisting Side Maximum Convex Angle: 1 ° Driving Side Maximum convex Angles: Received, Clerk's Office 08/27/2020 Optimize Critical Slip Surface Location: No Tension Crack Tension Crack Option: (none) F of S Distribution F of S Calculation Option: Constant Advanced Number of Slices: 30 F of S Tolerance: 0.001 Minimum Slip Surface Depth: 0.1 ft Search Method: Root Finder Tolerable difference between starting and converged F of S: 3 Maximum iterations to calculate converged lambda: 20 Max Absolute Lambda: 2

Materials

Embankment

Model: Mohr-Coulomb Unit Weight: 120 pcf Cohesion': 145 psf Phi': 32 ° Phi-B: 0 ° Pore Water Pressure Piezometric Line: 1

Dk Brn Silty Clay

Model: Mohr-Coulomb Unit Weight: 120 pcf Cohesion': 190 psf Phi': 32 ° Phi-B: 0 ° Pore Water Pressure Piezometric Line: 1

Clayey Silt

Model: Mohr-Coulomb Unit Weight: 120 pcf Cohesion': 190 psf Phi': 32 ° Phi-B: 0 ° Pore Water Pressure Piezometric Line: 1

Gry Snd Silty Clay

Model: Mohr-Coulomb Unit Weight: 120 pcf

Cohesion': 190 psf Phi': 32 ° Phi-B: 0 ° Pore Water Pressure Piezometric Line: 1

Gry Sand w/Silt

Model: Mohr-Coulomb Unit Weight: 120 pcf Cohesion': 0 psf Phi': 34 ° Phi-B: 0 ° Pore Water Pressure Piezometric Line: 1

Shale

Model: Mohr-Coulomb Unit Weight: 120 pcf Cohesion': 2,000 psf Phi': 0° Phi-B: 0° Pore Water Pressure Piezometric Line: 1

Rip-Rap

Model: Mohr-Coulomb Unit Weight: 130 pcf Cohesion': 0 psf Phi': 40 ° Phi-B: 0 ° Pore Water Pressure Piezometric Line: 1

Ash

Model: Mohr-Coulomb Unit Weight: 100 pcf Cohesion': 0 psf Phi': 25 ° Phi-B: 0 ° Pore Water Pressure Piezometric Line: 1

Slip Surface Entry and Exit

Left Projection: Range Left-Zone Left Coordinate: (42, 520) ft Left-Zone Right Coordinate: (161, 541.91176) ft Left-Zone Increment: 4

Right Projection: Range Electronic Filing: Received, Clerk's Office 08/27/2020

Right-Zone Left Coordinate: (195, 554) ft Right-Zone Right Coordinate: (350, 553) ft Right-Zone Increment: 4 Radius Increments: 4

Slip Surface Limits

Left Coordinate: (0, 535) ft Right Coordinate: (350, 553) ft

Piezometric Lines

Piezometric Line 1

Coordinates

	X (ft)	Y (ft)
Coordinate 1	0	525
Coordinate 2	39	520
Coordinate 3	68	520
Coordinate 4	108	530
Coordinate 5	149	536
Coordinate 6	156	539
Coordinate 7	194	545
Coordinate 8	202	549
Coordinate 9	205	554
Coordinate 10	319	554
Coordinate 11	350	554

Seismic Coefficients

Horz Seismic Coef.: 0 Vert Seismic Coef.: 0

Points

	X (ft)	Y (ft)
Point 1	0	535
Point 2	105	534
Point 3	146	536
Point 4	190	553
Point 5	195	554
Point 6	205	554
Point 7	210	553
Point 8	260	533
Point 9	285	523

Dallman Long Term Static

Point 10	319	₅₂ Ęle	ctronic	Filing:	Received	l, Clerk's	Office	08/27/2	2020
Point 11	108	534							
Point 12	149	536							
Point 13	156	539							
Point 14	156	540							
Point 15	127	535							
Point 16	0	534							
Point 17	0	530							
Point 18	0	520							
Point 19	0	514							
Point 20	0	504							
Point 21	0	503							
Point 22	0	490							
Point 23	319	490							
Point 24	319	503							
Point 25	319	504							
Point 26	319	514							
Point 27	319	520							
Point 28	268	530							
Point 29	96	530							
Point 30	93	530							
Point 31	68	520							
Point 32	65	520							
Point 33	65	519							
Point 34	62	519							
Point 35	45	519							
Point 36	42	519							
Point 37	42	520							
Point 38	39	520							
Point 39	14	530							
Point 40	11	530							
Point 41	319	553							
Point 42	319	554							
Point 43	0	475							
Point 44	319	475							
Point 45	350	475							
Point 46	350	503							
Point 47	350	504							
Point 48	350	514							
Point 49	350	520							
Point 50	350	523							
Point 51	350	553							
Point 52	350	554							

Regions

	Material	Points	Area (ft²)
Region 1	Embankment	15,3,12,13,14,4,5,6,7,8	1,329

cwlp dallman long term static.html[10/3/2016 4:19:49 PM]

Dallman Long Term Static

0			
Region 2	Dk Brn SELECTION	ic, <u>Filing</u> ; <u>R</u> eceived, Cler	k's Office
Region 3	Dk Brn Silty Clay	16,17,40	22
Region 4	Clayey Silt	17,18,38,40	250
Region 5	Clayey Silt	31,29,28,9,50,49	2,165.5
Region 6	Gry Snd Silty Clay	18,19,48,49,31,33,34,35,36,38	2,074
Region 7	Clayey Silt	19,20,47,48	3,500
Region 8	Gry Sand w/Silt	20,21,46,47	350
Region 9	Shale	21,22,43,45,46	9,800
Region 10	Rip-Rap	14,13,12,3	9.5
Region 11	Rip-Rap	11,2,30,32,34,33,31,29	45
Region 12	Rip-Rap	1,16,40,38,36,35,37,39	46
Region 13	Ash	50,9,28,8,7,51	3,072.5

Current Slip Surface

Slip Surface: 7 F of S: 2.245 Volume: 3,200.3592 ft³ Weight: 383,171.01 lbs Resisting Moment: 36,423,187 lbs-ft Activating Moment: 16,221,979 lbs-ft Resisting Force: 158,991.47 lbs Activating Force: 70,815.407 lbs F of S Rank: 1 Exit: (45.522783, 519) ft Entry: (233.67574, 553) ft Radius: 221.12319 ft Center: (104.14305, 732.21147) ft

Slip Slices

	X (ft)	Y (ft)	PWP (psf)	Base Normal Stress (psf)	Frictional Strength (psf)	Cohesive Strength (psf)
Slice 1	48.268985	518.28274	107.15674	178.87139	44.812287	190
Slice 2	53.761391	516.92283	192.01571	353.71493	101.04088	190
Slice 3	59.253797	515.71076	267.64836	511.69752	152.49884	190
Slice 4	63.5	514.86088	320.68133	660.9906	212.64883	190
Slice 5	66.5	514.32124	354.35436	839.15316	302.93591	190
Slice 6	68.188424	514.03105	375.40183	956.76282	363.27466	190
Slice 7	71.454742	513.5399	457.00431	1,171.6028	446.53067	190
Slice 8	77.61053	512.70776	604.96029	1,562.4615	598.31313	190
Slice 9	83.766318	512.05084	741.98189	1,926.5541	740.20288	190
Slice 10	89.922106	511.5676	868.16684	2,261.6771	870.76189	190
Slice 11	94.5	511.30374	956.04651	2,488.3181	957.46953	190
Slice 12	100.5	511.1641	1,058.3602	2,738.6197	1,049.9427	190
Slice 13	106.5	511.10593	1,155.5902	2,901.8597	1,091.1903	190

Dallman Long Term Static

Slice	111 16667	Electronic	Filing: Rec	eived, Clerk's Offi	ce 08/27/2020	190
14	111.10007	511.22250	1,200.0233	2,077.0302		
15	117.5	511.51486	1,240.2241	2,843.683	1,001.9523	190
Slice 16	123.83333	511.98965	1,268.4315	2,784.2952	947.21677	190
Slice 17	130.22731	512.6562	1,285.2263	2,699.9685	884.02907	190
Slice 18	136.68194	513.51981	1,290.2789	2,592.4107	813.66226	190
Slice 19	140.33133	514.07002	1,289.2711	2,525.18	772.28159	190
Slice 20	143.3767	514.61303	1,283.1968	2,460.0575	735.38418	190
Slice 21	147.5	515.38596	1,272.6186	2,435.0091	726.34218	190
Slice 22	152.5	516.4704	1,312.2468	2,513.0909	750.37068	190
Slice 23	158.57153	517.90802	1,341.4759	2,572.8352	769.43867	190
Slice 24	163.71458	519.28057	1,306.5016	2,609.0957	813.95114	190
Slice 25	169.25034	520.91337	1,259.1564	2,631.83	857.74164	190
Slice 26	175.17882	522.83241	1,197.8192	2,639.2275	900.69184	190
Slice 27	181.10729	524.93876	1,124.7941	2,628.7031	939.74661	190
Slice 28	187.03576	527.2382	1,039.7203	2,600.2125	975.10375	190
Slice 29	191.80962	529.21848	963.18591	2,530.9234	979.63114	190
Slice 30	193.80962	530.08446	928.85427	2,475.0325	966.15936	190
Slice 31	194.5	530.39277	927.09136	2,455.6885	955.17346	190
Slice 32	198.5	532.26834	934.8556	2,265.3266	831.37054	190
Slice 33	203.5	534.67452	1,049.9097	2,031.1828	613.16748	145
Slice 34	207.5	536.75096	1,076.3401	1,798.7329	451.40109	145
Slice 35	213.74088	540.20827	860.60409	1,381.2735	325.35038	145
Slice 36	221.22264	544.6791	581.62409	853.3867	169.81613	145
Slice 37	229.31963	550.0073	249.14466	341.52741	43.078784	0

APPENDIX G-2

Short-Term Static Slope Stability Analysis

Dallman Short Term Static

Report generated using GeoStudio 2012. Copyright C 1991-2014 GEO-SLOPE International Ltd.

File Information

File Version: 8.14 Created By: Karl Finke Last Edited By: Karl Finke Revision Number: 40 Date: 10/3/2016 Time: 1:54:59 PM Tool Version: 8.14.1.10087 File Name: CWLP Dallman Short Term Static.gsz Directory: J:\CWLP Factor of Safety Report\SlopeW\ Last Solved Date: 10/3/2016 Last Solved Time: 1:55:04 PM

Project Settings

Length(L) Units: Feet Time(t) Units: Seconds Force(F) Units: Pounds Pressure(p) Units: psf Strength Units: psf Unit Weight of Water: 62.4 pcf View: 2D Element Thickness: 1

Analysis Settings

Dallman Short Term Static

Kind: SLOPE/W Method: Morgenstern-Price Settings Side Function Interslice force function option: Half-Sine PWP Conditions Source: Piezometric Line Apply Phreatic Correction: No Use Staged Rapid Drawdown: No Slip Surface Direction of movement: Right to Left Use Passive Mode: No Slip Surface Option: Entry and Exit Critical slip surfaces saved: 1 Resisting Side Maximum Convex Angle: 1 ° Driving Side Maximum convex Angles: Received, Clerk's Office 08/27/2020 Optimize Critical Slip Surface Location: No Tension Crack Tension Crack Option: (none) F of S Distribution F of S Calculation Option: Constant Advanced Number of Slices: 30 F of S Tolerance: 0.001 Minimum Slip Surface Depth: 0.1 ft Search Method: Root Finder Tolerable difference between starting and converged F of S: 3 Maximum iterations to calculate converged lambda: 20 Max Absolute Lambda: 2

Materials

Embankment

Model: Mohr-Coulomb Unit Weight: 120 pcf Cohesion': 1,400 psf Phi': 0° Phi-B: 0° Pore Water Pressure Piezometric Line: 1

Dk Brn Silty Clay

Model: Mohr-Coulomb Unit Weight: 120 pcf Cohesion': 1,800 psf Phi': 0° Phi-B: 0° Pore Water Pressure Piezometric Line: 1

Clayey Silt

Model: Mohr-Coulomb Unit Weight: 120 pcf Cohesion': 1,400 psf Phi': 0° Phi-B: 0° Pore Water Pressure Piezometric Line: 1

Gry Snd Silty Clay

Model: Mohr-Coulomb Unit Weight: 120 pcf Cohesion': 1,000 psf Phi': 0 ° Phi-B: 0 ° Pore Water Pressure Piezometric Line: 1

Gry Sand w/Silt

Model: Mohr-Coulomb Unit Weight: 120 pcf Cohesion': 0 psf Phi': 34 ° Phi-B: 0 ° Pore Water Pressure Piezometric Line: 1

Shale

Model: Mohr-Coulomb Unit Weight: 120 pcf Cohesion': 2,000 psf Phi': 0° Phi-B: 0° Pore Water Pressure Piezometric Line: 1

Rip-Rap

Model: Mohr-Coulomb Unit Weight: 130 pcf Cohesion': 0 psf Phi': 40 ° Phi-B: 0 ° Pore Water Pressure Piezometric Line: 1

Ash

Model: Mohr-Coulomb Unit Weight: 100 pcf Cohesion': 0 psf Phi': 15 ° Phi-B: 0 ° Pore Water Pressure Piezometric Line: 1

Slip Surface Entry and Exit

Left Projection: Range Left-Zone Left Coordinate: (42, 520) ft Left-Zone Right Coordinate: (161, 541.91176) ft Left-Zone Increment: 4

Right Projection: Range Electronic Filing: Received, Clerk's Office 08/27/2020

Right-Zone Left Coordinate: (203, 554) ft Right-Zone Right Coordinate: (350, 553) ft Right-Zone Increment: 4 Radius Increments: 4

Slip Surface Limits

Left Coordinate: (0, 535) ft Right Coordinate: (350, 553) ft

Piezometric Lines

Piezometric Line 1

Coordinates

	X (ft)	Y (ft)
Coordinate 1	0	525
Coordinate 2	39	520
Coordinate 3	68	520
Coordinate 4	108	530
Coordinate 5	149	536
Coordinate 6	156	539
Coordinate 7	194	545
Coordinate 8	202	549
Coordinate 9	205	554
Coordinate 10	319	554
Coordinate 11	350	554

Seismic Coefficients

Horz Seismic Coef.: 0 Vert Seismic Coef.: 0

Points

	X (ft)	Y (ft)
Point 1	0	535
Point 2	105	534
Point 3	146	536
Point 4	190	553
Point 5	195	554
Point 6	205	554
Point 7	210	553
Point 8	260	533
Point 9	285	523

Dallman Short Term Static

Point 10	319	₅₂ جle	ctronic Filing: Rec	eived, Clerk's	Office 08/27/2020
Point 11	108	534			
Point 12	149	536			
Point 13	156	539			
Point 14	156	540			
Point 15	127	535			
Point 16	0	534			
Point 17	0	530			
Point 18	0	520			
Point 19	0	514			
Point 20	0	504			
Point 21	0	503			
Point 22	0	490			
Point 23	319	490			
Point 24	319	503			
Point 25	319	504			
Point 26	319	514			
Point 27	319	520			
Point 28	268	530			
Point 29	96	530			
Point 30	93	530			
Point 31	68	520			
Point 32	65	520			
Point 33	65	519			
Point 34	62	519			
Point 35	45	519			
Point 36	42	519			
Point 37	42	520			
Point 38	39	520			
Point 39	14	530			
Point 40	11	530			
Point 41	319	553			
Point 42	319	554			
Point 43	0	475			
Point 44	319	475			
Point 45	350	475			
Point 46	350	503			
Point 47	350	504			
Point 48	350	514			
Point 49	350	520			
Point 50	350	523			
Point 51	350	553			
Point 52	350	554			

Regions

	Material	Points	Area (ft²)
Region 1	Embankment	15,3,12,13,14,4,5,6,7,8	1,329

Dallman Short Term Static

Region 2		nic Filing: Received, Cler	k's Office
Region 3	Dk Brn Silty Clay	16,17,40	22
Region 4	Clayey Silt	17,18,38,40	250
Region 5	Clayey Silt	31,29,28,9,50,49	2,165.5
Region 6	Gry Snd Silty Clay	18,19,48,49,31,33,34,35,36,38	2,074
Region 7	Clayey Silt	19,20,47,48	3,500
Region 8	Gry Sand w/Silt	20,21,46,47	350
Region 9	Shale	21,22,43,45,46	9,800
Region 10	Rip-Rap	14,13,12,3	9.5
Region 11	Rip-Rap	11,2,30,32,34,33,31,29	45
Region 12	Rip-Rap	1,16,40,38,36,35,37,39	46
Region 13	Ash	50,9,28,8,7,51	3,072.5

Current Slip Surface

Slip Surface: 9 F of S: 2.897 Volume: 9,136.4623 ft³ Weight: 1,093,861.8 lbs Resisting Moment: 47,499,602 lbs-ft Activating Moment: 16,395,280 lbs-ft Resisting Force: 357,222.23 lbs Activating Force: 123,292.08 lbs F of S Rank: 1 Exit: (42, 520) ft Entry: (239.67574, 553) ft Radius: 112.36371 ft Center: (132.46693, 586.64336) ft

Slip Slices

	X (ft)	Y (ft)	PWP (psf)	Base Normal Stress (psf)	Frictional Strength (psf)	Cohesive Strength (psf)
Slice 1	42.372628	519.5	31.2	73.027936	35.097806	0
Slice 2	43.872628	517.55435	152.60873	711.94304	0	1,000
Slice 3	45.871637	515.05435	308.60873	974.73547	0	1,000
Slice 4	51.540427	509	686.4	1,850.0351	0	1,400
Slice 5	56.88762	503.5	1,029.6	2,336.2148	881.32283	0
Slice 6	59.71883	501.06093	1,181.7983	3,000.1174	0	2,000
Slice 7	63.5	497.9554	1,375.5833	3,409.4613	0	2,000
Slice 8	66.5	495.70089	1,516.2646	3,784.4612	0	2,000
Slice 9	71.125	492.57502	1,760.0687	4,370.811	0	2,000
Slice 10	77.375	488.77803	2,094.5006	5,106.8708	0	2,000
Slice 11	83.625	485.50966	2,395.9473	5,767.5331	0	2,000
Slice 12	89.875	482.71971	2,667.54	6,353.5021	0	2,000
Slice 13	94.5	480.90039	2,853.2155	6,740.4066	0	2,000

Slice	100.5	Electronic 479.02514	Filing: Rec 3,063.8314	eived, Clerk's Off 7,152.3338	ice 08/27/2020	2,000
Slice	106.5	477.33213	3,263.075	7,458.84	0	2,000
Slice	110.94101	476.40154	3,371.4003	7,514.7108	0	2,000
Slice	116.82303	475.41364	3,486.7583	7,567.0138	0	2,000
Slice	123.38202	475	3,572.4641	7,392.9072	0	2,000
Slice	130.43835	475	3,636.9005	7,390.4633	0	2,000
Slice 20	137.31506	475	3,699.6965	7,383.8323	0	2,000
Slice 21	142.96161	475	3,751.2592	7,375.7445	0	2,000
Slice 22	145.58491	475.04879	3,772.1697	7,172.558	0	2,000
Slice 23	147.5	475.30011	3,773.9755	7,179.3671	0	2,000
Slice 24	152.5	476.13713	3,829.0431	7,210.3691	0	2,000
Slice 25	159.4	477.61149	3,864.1417	7,194.7724	0	2,000
Slice 26	166.2	479.52204	3,811.9215	7,137.3757	0	2,000
Slice 27	173	481.90854	3,730.0017	7,036.0639	0	2,000
Slice 28	179.8	484.80463	3,616.2836	6,889.9686	0	2,000
Slice 29	186.6	488.25558	3,467.9422	6,695.9509	0	2,000
Slice 30	192	491.37608	3,326.4275	6,468.2458	0	2,000
Slice 31	194.5	492.95696	3,263.0859	6,318.1096	0	2,000
Slice 32	198.5	495.83306	3,208.4168	5,963.0255	0	2,000
Slice 33	203.5	499.60223	3,238.4207	5,489.861	0	2,000
Slice 34	206.2481	501.91318	3,250.2175	5,189.8481	0	2,000
Slice 35	208.04624	503.5	3,151.2	5,153.528	1,350.5873	0
Slice 36	209.29814	504.65773	3,078.9575	4,990.2829	0	1,400
Slice 37	214.09529	509.65773	2,766.9575	4,364.4456	0	1,400
Slice 38	220.56223	517	2,308.8	3,606.2371	0	1,000
Slice 39	226.22135	525	1,809.6	2,420.3273	0	1,400
	1		1			

Dallman Short Term Static

	Slice 40	230.46996	Electronic 531.7148	Filing: Rec 1,390.5962	eived, Clerk's Offi 1,289.2997	ce 08/27/2020 -0	1,800
2	Slice 41	233.64675	538.04232	995.7594	636.10168	-0	1,400
	Slice 42	237.76908	547.82751	385.16317	531.44729	39.196713	0
APPENDIX G-3

Seismic Slope Stability Analysis

Report generated using GeoStudio 2012. Copyright @ 1991-2014 GEO-SLOPE International Ltd.

File Information

File Version: 8.14 Created By: Karl Finke Last Edited By: Karl Finke Revision Number: 39 Date: 10/3/2016 Time: 2:01:36 PM Tool Version: 8.14.1.10087 File Name: CWLP Dallman Short Term Seismic.gsz Directory: J:\CWLP Factor of Safety Report\SlopeW\ Last Solved Date: 10/3/2016 Last Solved Time: 2:01:42 PM

Project Settings

Length(L) Units: Feet Time(t) Units: Seconds Force(F) Units: Pounds Pressure(p) Units: psf Strength Units: psf Unit Weight of Water: 62.4 pcf View: 2D Element Thickness: 1

Analysis Settings

Dallman Short Term Seismic

Kind: SLOPE/W Method: Morgenstern-Price Settings Side Function Interslice force function option: Half-Sine PWP Conditions Source: Piezometric Line Apply Phreatic Correction: No Use Staged Rapid Drawdown: No Slip Surface Direction of movement: Right to Left Use Passive Mode: No Slip Surface Option: Entry and Exit Critical slip surfaces saved: 1 Resisting Side Maximum Convex Angle: 1 ° Driving Side Maximum convex Angles: Received, Clerk's Office 08/27/2020 Optimize Critical Slip Surface Location: No Tension Crack Tension Crack Option: (none) F of S Distribution F of S Calculation Option: Constant Advanced Number of Slices: 30 F of S Tolerance: 0.001 Minimum Slip Surface Depth: 0.1 ft Search Method: Root Finder Tolerable difference between starting and converged F of S: 3 Maximum iterations to calculate converged lambda: 20 Max Absolute Lambda: 2

Materials

Embankment

Model: Mohr-Coulomb Unit Weight: 120 pcf Cohesion': 1,400 psf Phi': 0° Phi-B: 0° Pore Water Pressure Piezometric Line: 1

Dk Brn Silty Clay

Model: Mohr-Coulomb Unit Weight: 120 pcf Cohesion': 1,800 psf Phi': 0° Phi-B: 0° Pore Water Pressure Piezometric Line: 1

Clayey Silt

Model: Mohr-Coulomb Unit Weight: 120 pcf Cohesion': 1,400 psf Phi': 0° Phi-B: 0° Pore Water Pressure Piezometric Line: 1

Gry Snd Silty Clay

Model: Mohr-Coulomb Unit Weight: 120 pcf Cohesion': 1,000 psf Phi': 0 ° Phi-B: 0 ° Pore Water Pressure Piezometric Line: 1

Gry Sand w/Silt

Model: Mohr-Coulomb Unit Weight: 120 pcf Cohesion': 0 psf Phi': 34 ° Phi-B: 0 ° Pore Water Pressure Piezometric Line: 1

Shale

Model: Mohr-Coulomb Unit Weight: 120 pcf Cohesion': 2,000 psf Phi': 0° Phi-B: 0° Pore Water Pressure Piezometric Line: 1

Rip-Rap

Model: Mohr-Coulomb Unit Weight: 130 pcf Cohesion': 0 psf Phi': 40 ° Phi-B: 0 ° Pore Water Pressure Piezometric Line: 1

Ash

Model: Mohr-Coulomb Unit Weight: 100 pcf Cohesion': 0 psf Phi': 15 ° Phi-B: 0 ° Pore Water Pressure Piezometric Line: 1

Slip Surface Entry and Exit

Left Projection: Range Left-Zone Left Coordinate: (42, 520) ft Left-Zone Right Coordinate: (161, 541.91176) ft Left-Zone Increment: 4

Right Projection: Range Electronic Filing: Received, Clerk's Office 08/27/2020

Right-Zone Left Coordinate: (203, 554) ft Right-Zone Right Coordinate: (350, 553) ft Right-Zone Increment: 4 Radius Increments: 4

Slip Surface Limits

Left Coordinate: (0, 535) ft Right Coordinate: (350, 553) ft

Piezometric Lines

Piezometric Line 1

Coordinates

	X (ft)	Y (ft)
Coordinate 1	0	525
Coordinate 2	39	520
Coordinate 3	68	520
Coordinate 4	108	530
Coordinate 5	149	536
Coordinate 6	156	539
Coordinate 7	194	545
Coordinate 8	202	549
Coordinate 9	205	554
Coordinate 10	319	554
Coordinate 11	350	554

Seismic Coefficients

Horz Seismic Coef.: 0.1 Vert Seismic Coef.: 0

Points

	X (ft)	Y (ft)
Point 1	0	535
Point 2	105	534
Point 3	146	536
Point 4	190	553
Point 5	195	554
Point 6	205	554
Point 7	210	553
Point 8	260	533
Point 9	285	523

	212	525	,
Point 11	108	534	
Point 12	149	536	
Point 13	156	539	
Point 14	156	540	
Point 15	127	535	
Point 16	0	534	
Point 17	0	530	
Point 18	0	520	
Point 19	0	514	
Point 20	0	504	
Point 21	0	503	
Point 22	0	490	
Point 23	319	490	
Point 24	319	503	
Point 25	319	504	
Point 26	319	514	
Point 27	319	520	
Point 28	268	530	
Point 29	96	530	
Point 30	93	530	
Point 31	68	520	
Point 32	65	520	
Point 33	65	519	
Point 34	62	519	
Point 35	45	519	
Point 36	42	519	
Point 37	42	520	
Point 38	39	520	
Point 39	14	530	
Point 40	11	530	
Point 41	319	553	
Point 42	319	554	
Point 43	0	475	
Point 44	319	475	
Point 45	350	475	
Point 46	350	503	
Point 47	350	504	
Point 48	350	514	
Point 49	350	520	
Point 50	350	523	
Point 51	350	553	
Point 52	350	554	

Regions

	Material	Points	Area (ft²)
Region 1	Embankment	15,3,12,13,14,4,5,6,7,8	1,329

Point 10 319 55 Electronic Filing: Received, Clerk's Office 08/27/2020

÷.

Region 2	Dk Brn SELectror	ic, <u>Filing</u> ; <u>R</u> eceived, Cler	k's Office
Region 3	Dk Brn Silty Clay	16,17,40	22
Region 4	Clayey Silt	17,18,38,40	250
Region 5	Clayey Silt	31,29,28,9,50,49	2,165.5
Region 6	Gry Snd Silty Clay	18,19,48,49,31,33,34,35,36,38	2,074
Region 7	Clayey Silt	19,20,47,48	3,500
Region 8	Gry Sand w/Silt	20,21,46,47	350
Region 9	Shale	21,22,43,45,46	9,800
Region 10	Rip-Rap	14,13,12,3	9.5
Region 11	Rip-Rap	11,2,30,32,34,33,31,29	45
Region 12	Rip-Rap	1,16,40,38,36,35,37,39	46
Region 13	Ash	50,9,28,8,7,51	3,072.5

Current Slip Surface

Slip Surface: 42 F of S: 1.754 Volume: 6,598.2566 ft³ Weight: 766,725.5 lbs Resisting Moment: 71,665,768 lbs-ft Activating Moment: 40,847,042 lbs-ft Resisting Force: 263,139.9 lbs Activating Force: 149,983.87 lbs F of S Rank: 1 Exit: (71.965012, 522.4875) ft Entry: (313.22525, 553) ft Radius: 265.53272 ft Center: (162.97654, 771.93595) ft

Slip Slices

	X (ft)	Y (ft)	PWP (psf)	Base Normal Stress (psf)	Frictional Strength (psf)	Cohesive Strength (psf)
Slice 1	72.710494	522.21803	-64.921586	84.576094	70.967769	0
Slice 2	73.938352	521.77687	-18.238546	472.45788	0	1,400
Slice 3	76.758491	520.80259	86.550781	718.90818	0	1,400
Slice 4	82.57219	518.89551	296.24629	1,134.4225	0	1,000
Slice 5	89.524063	516.79035	536.05734	1,710.1262	0	1,000
Slice 6	94.5	515.38931	701.10704	2,105.3764	0	1,000
Slice 7	97.957845	514.49447	810.88759	2,362.8992	0	1,000
Slice 8	102.45784	513.40492	949.07567	2,767.0697	0	1,400
Slice 9	106.5	512.48332	1,069.641	2,986.2009	0	1,400
Slice 10	112.75	511.24165	1,213.8969	3,170.3135	0	1,400
Slice 11	122.25	509.5891	1,403.7668	3,429.6314	0	1,400
Slice 12	130.43835	508.42715	1,551.0464	3,605.8766	0	1,400
Slice 13	137.31506	507.6687	1,661.1696	3,715.8515	0	1,400

	1	Electronic	Filing Rec	reived Clerk's Offi	ice 08/27/2020	1
Slice 14	143.3767	507.14065	1,749.4733	3,787.6752	0	1,400
Slice 15	147.5	506.8589	1,804.7072	3,890.9901	0	1,400
Slice 16	152.5	506.63311	1,926.094	4,125.6573	0	1,400
Slice 17	160.25	506.45125	2,072.9157	4,430.4254	0	1,400
Slice 18	168.75	506.50004	2,153.6184	4,724.8943	0	1,400
Slice 19	177.25	506.8213	2,217.3194	4,975.4526	0	1,400
Slice 20	185.75	507.41601	2,263.9567	5,186.2206	0	1,400
Slice 21	192	508.00184	2,288.98	5,279.8551	0	1,400
Slice 22	194.5	508.28155	2,306.8313	5,276.83	0	1,400
Slice 23	198.5	508.81386	2,398.4152	5,183.9269	0	1,400
Slice 24	203.5	509.51802	2,619.6756	5,051.391	0	1,400
Slice 25	207.5	510.17489	2,734.6872	4,909.4629	0	1,400
Slice 26	214.00935	511.38541	2,659.1506	4,657.9989	0	1,400
Slice 27	222.02804	513.08535	2,553.0742	4,341.2089	0	1,400
Slice 28	229.50729	514.89814	2,439.9562	4,038.4685	0	1,000
Slice 29	236.4471	516.79547	2,321.5624	3,744.462	0	1,000
Slice 30	243.38691	518.89734	2,190.4062	3,435.4115	0	1,000
Slice 31	250.14261	521.14201	2,050.3384	3,081.8957	0	1,400
Slice 32	256.7142	523.52391	1,901.7079	2,742.488	0	1,400
Slice 33	264	526.40963	1,721.6393	2,341.8376	0	1,400
Slice 34	269.14655	528.55562	1,587.7296	2,046.5904	0	1,400
Slice 35	274.58632	531.04491	1,432.3974	2,013.5709	155.72496	0
Slice 36	283.17275	535.21394	1,172.2503	1,660.0611	130.7085	0
Slice 37	291.75918	539.77533	887.61932	1,267.4716	101.78111	0
Slice 38	300.3456	544.75278	577.02659	827.27814	67.054701	0
Slice 39	308.93203	550.17436	238.71985	329.37161	24.290066	0

The following are attachments to the testimony of Andrew Rehn.

ATTACHMENT 3

Submitted to Illinois Power Resources Generating, LLC 7800 S. Cilco Lane Bartonville, IL 61607

Submitted by AECOM 1001 Highlands Plaza Drive West Suite 300 St. Louis, MO 63110

October 2016

CCR Rule Report: Initial Safety Factor Assessment

For

Ash Pond

At Edwards Power Station

1 Introduction

This Coal Combustion Residual (CCR) Rule Report documents that the Ash Pond at the Illinois Power Resources Generating, LLC Edwards Power Station meets the safety factor assessment requirements specified in 40 Code of Federal Regulations (CFR) §257.73(e). The Ash Pond is located near Bartonville, Illinois in Peoria County, approximately 0.1 miles west of the Edwards Power Station. The Ash Pond serves as the wet impoundment basin for CCR material produced by the Edwards Power Station.

The Ash Pond is an existing CCR surface impoundment as defined by 40 CFR §257.53. The CCR Rule requires that the initial safety factor assessment for an existing CCR surface impoundment be completed by October 17, 2016.

The owner or operator of the CCR unit must obtain a certification from a qualified professional engineer stating that the initial safety factor assessment meets the requirements of 40 CFR § 257.73(e). The owner or operator must prepare a safety factor assessment every five years.

2 Initial Safety Factor Assessment

40 CFR §257.73(e)(1)

The owner or operator must conduct initial and periodic safety factor assessments for each CCR unit and document whether the calculated factors of safety for each CCR unit achieve the minimum safety factors specified in (e)(1)(i) through (iv) of this section for the critical cross section of the embankment. The critical cross section is the cross section anticipated to be the most susceptible of all cross sections to structural failure based on appropriate engineering considerations, including loading conditions. The safety factor assessments must be supported by appropriate engineering calculations.

(i) The calculated static factor of safety under the long-term, maximum storage pool loading condition must equal or exceed 1.50.

(ii) The calculated static factor of safety under the maximum surcharge pool loading condition must equal or exceed 1.40.

(iii) The calculated seismic factor of safety must equal or exceed 1.00.

(iv) For dikes constructed of soils that have susceptibility to liquefaction, the calculated liquefaction factor of safety must equal or exceed 1.20.

A geotechnical investigation program and stability analyses were performed to evaluate the design, performance, and condition of the earthen dikes of the Ash Pond. The exploration consisted of auger borings, cone penetrating testing, and laboratory program including index, strength, and consolidation testing. Data collected from the geotechnical investigation, available design drawings, construction records, inspection reports, previous engineering investigations, and other pertinent historic documents were utilized to perform the safety factor assessment and geotechnical analyses.

In general, the subsurface conditions at the Ash Pond consist of a soft to very stiff compacted ash and clay dike, overlying stiff alluvial clay, overlying soft to medium stiff alluvial clay, which in turn overlies shale bedrock. Phreatic water is typically located above the embankment/foundation interface beneath the crest of the dike, and at the embankment/foundation interface near the toe of the dike.

Ten (10) representative cross sections were analyzed using limit equilibrium slope stability analysis software to evaluate stability of the perimeter dike system and foundations. The cross sections were located to represent critical surface geometry, subsurface stratigraphy, and phreatic conditions across the site. Each cross section was evaluated for each of the loading conditions stipulated in §257.73(e)(1).

The Soils Susceptible to Liquefaction loading condition, \$257.73(e)(1)(iv), was not evaluated because a liquefaction susceptibly evaluation did not find soils susceptible to liquefaction within the Ash Pond dikes. As a result, this loading condition is not applicable to the Ash Pond at the Edwards Power Station.

Results of the Initial Safety Factor Assessments, for the critical cross-section, (i.e., the lowest calculated factor of safety out of the cross sections analyzed for each loading condition) are listed in Table 1.

	-	•	
Loading Conditions	§257.73(e)(1) Subsection	Minimum Factor of Safety	Calculated Factor of Safety
Maximum Storage Pool Loading	(i)	1.50	1.54
Maximum Surcharge Pool Loading	(ii)	1.40	1.54
Seismic	(iii)	1.00	1.08
Soils Susceptible to Liquefaction	(iv)	1.20	Not Applicable

Table 1 – Summary of Initial Safety Factor Assessment

Based on this evaluation, the Ash Pond meets the requirements in §257.73(e)(1).

3 Certification Statement

CCR Unit: Illinois Power Resources Generating, LLC; Edwards Power Station; Ash Pond

I, Victor A. Modeer, being a Registered Professional Engineer in good standing in the State of Illinois, do hereby certify, to the best of my knowledge, information, and belief that the information contained in this CCR Rule Report, and the underlying data in the operating record, has been prepared in accordance with the accepted practice of engineering. I certify, for the above-referenced CCR Unit, that the initial safety factor assessment dated October 12, 2016 meets the requirements of 40 CFR §257.73(e).

A MODER JR Printed Name

Date

About AECOM

AECOM (NYSE: ACM) is a global provider of professional technical and management support services to a broad range of markets, including transportation, facilities, environmental, energy, water and government. With nearly 100,000 employees around the world, AECOM is a leader in all of the key markets that it serves. AECOM provides a blend of global reach, local knowledge, innovation, and collaborative technical excellence in delivering solutions that enhance and sustain the world's built, natural, and social environments. A Fortune 500 company, AECOM serves clients in more than 100 countries and has annual revenue in excess of \$19 billion.

More information on AECOM and its services can be found at <u>www.aecom.com</u>.

1001 Highlands Plaza Drive Wes Suite 300 St. Louis, MO 63110 1-314-429-0100 The following are attachments to the testimony of Andrew Rehn.

ATTACHMENT 4

STRUCTURAL STABILITY AND FACTOR OF SAFETY ASSESSMENT ASH POND 2 JOLIET 29 STATION OCTOBER 2016

This report presents the initial periodic structural stability and initial safety factor assessment of the Ash Pond 2 at the Joliet 29 Station (Site) in Joliet, Illinois (Figure 1). This report addresses the initial structural stability and safety factor assessment requirements of the Coal Combustion Residuals (CCR) regulations, Code of Federal Regulations Title 40, Part 257, Subpart D (referred to as the CCR Rule). These regulations were published in the Federal Register on 17 April 2015 and became effective on 19 October 2015. The Joliet 29 Station is owned and operated by Midwest Generation, LLC (Midwest Generation). Based on the results provided in this report, Ash Pond 2 meets the requirements of §257.73(d) and §257.73(e) of the CCR Rule.

The work presented in this report was performed under the direction of Ms. Jane Soule, P.E., of Geosyntec Consultants, Inc. (Geosyntec) in accordance with §257.73(d) and §257.73(e). Mr. Robert White reviewed this report in accordance with Geosyntec's senior review policy.

1. Regulation Requirements - §257.73

Structural integrity criteria for existing CCR impoundments is described in §257.73 and includes structural stability and factor of safety assessments. Ash Pond 2 meets the minimum size and capacity criteria under §257.73(b) and is subject to the periodic structural stability and safety factor assessments required.

2. Site Conditions

Ash Pond 2 is approximately 500 feet by 280 feet in plan area and is located approximately 70 feet south of U.S. Route 6, east of Pond 1, west of the east entrance to the Joliet 29 Station, and north of the silo building at the Site. The pond is surrounded by embankments on the south, east, and west. There are no embankments on the north side of the pond where existing ground elevations generally increase to the north toward U.S. Route 6. Ash Pond 2 is currently lined with a 60-mil high density polyethylene (HDPE) geomembrane. A concrete retaining wall is located along the southern perimeter of Ash Pond 2, north of the silo building.

Based on available documentation and discussions with site personnel, Ash Pond 2, in its current configuration, was constructed in the late 1970s. A history of construction for the pond was prepared in accordance with §257.73(c) and describes the design of the Ash Pond 2 and its construction (Geosyntec, 2016a).

Ash Pond 2, Joliet 29 Station Structural Stability and Safety Factor Assessments October 2016

3. Structural Stability Assessment

The following subsections address the components of \$257.73(d)(1).

3.1 Foundations and Abutments – §257.73(d)(1)(i)

Site observations and construction documents show Ash Pond 2 is surrounded by embankments on the south, east, and west. There are no embankments on the north side of the pond where existing ground elevations generally increase to the north; however, Site investigations indicate that fill material may be present along the northern boundary. For engineering purposes, material located along the northern embankment is considered consistent with embankment fill. Native materials do not provide lateral support for the embankments and therefore the pond does not include abutments. The remainder of this section addresses the foundation materials for the pond's embankments.

Previous subsurface investigations performed at the Site indicate that the foundation materials underlying the embankments for Ash Pond 2 generally consist of approximately 20 to 30 feet of medium dense to very dense sand and gravel (Geosyntec, 2016b). Due to the granular nature of the foundation soils (sand and gravel), foundation settlement associated with the construction and operation of Ash Pond 2 is anticipated to be predominately elastic settlement, which would have likely occurred soon after construction in the late 1970s. Because of the age of the embankments (over 35 years old), it is very likely that any potential consolidation and secondary compression settlement has also occurred. Further, the Ash Pond 2 embankments were not constructed with abutments or separate engineered zones that would be most susceptible to the adverse effects of differential settlement. During the initial annual inspection performed for Ash Pond 2 in accordance with §257.83(b), no visual evidence of adverse effects resulting from settlement was observed (Geosyntec, 2016c). There are no proposed changes in operation which would increase loading conditions on the foundation; therefore, no significant settlement of the foundation materials underlying the embankments is anticipated to occur in the future and the settlement of the foundation is not anticipated to impact the integrity of the impoundment embankments.

A factor of safety against the triggering of liquefaction was calculated for saturated foundation materials underlying the Ash Pond 2 embankments. The factor of safety was calculated based methods outlined in Idriss and Boulanger (2008) using information obtained from field explorations, including borings, Cone Penetration Test (CPT) soundings, and laboratory data (Geosyntec, 2016b) and seismic data (Geosyntec, 2016d). The triggering analysis indicated a very low likelihood of liquefaction occurring in the foundation materials underlying the embankments (Geosyntec, 2016d).

Ash Pond 2, Joliet 29 Station Structural Stability and Safety Factor Assessments October 2016

3.2 Upstream Slope Protection – §257.73(d)(1)(ii)

Ash Pond 2 is lined with a 60-mil high density polyethylene (HDPE) geomembrane that protects the interior pond slopes from erosion, the effects of wave action, and mitigates effects of rapid drawdown.

3.3 Dike Compaction – §257.73(d)(1)(iii)

Because as-built construction documentation for Ash Pond 2 was not available at the time of this assessment, no quantitative evaluation of the degree of compaction of the embankments was performed. However, slope stability analyses show that the embankments for Ash Pond 2 are sufficient to withstand the range of loading conditions in the CCR unit (Geosyntec, 2016e).

3.4 Downstream Slope Protection – §257.73(d)(1)(iv)

The western downstream slope for Ash Pond 2 is the interior slope of Pond 1 and is lined with a geomembrane that provides erosion protection. Based on site observations in October 2015, the surfaces of eastern and southern downstream slopes for the Ash Pond 2 embankments consist of sandy gravel, gravelly sand, gravel, and some cobbles and include sparse vegetation. Based on site observations, the existing surface conditions of the slopes provide adequate slope protection.

3.5 Spillway – §257.73(d)(1)(v)

Ash Pond 2 was designed and constructed, and is operated and maintained, without an emergency spillway. Ash Pond 2 was constructed with elevated embankments on the south, east, and west perimeters. There are no embankments on the north side of the pond where existing ground elevations generally increase to the north. There is a 5-foot high, non-structural berm that exists between Ash Pond 2 and US route 6, which prevents run-on from US route 6. There is no significant run-on to the basins. Inflows for the pond consist solely of regulated flows from plant operations and precipitation that falls within the surface area of the pond and embankment crests. Surface water levels are maintained by regulating inflow from plant operations and maintaining operating levels. An inflow design flood control system plan has been prepared to document that the Basins adequately manage flow from the 1,000 year flood event (Geosyntec, 2016f).

3.6 Structural Integrity of Hydraulic Structures – §257.73(d)(1)(vi)

Hydraulic structures passing through or beneath the embankments of Ash Pond 2 consist of outlet pipes associated with Pond 1 and Ash Pond 2, as presented in Figure 2. These pipes were inspected on 9 June 2016 by a company specializing in video camera pipe inspections. No significant deterioration, deformation, distortion, bedding deficiencies, sedimentation, or

Ash Pond 2, Joliet 29 Station Structural Stability and Safety Factor Assessments October 2016

debris that would negatively affect operation of the pipes was observed during inspection of these outlet pipes.

3.7 Downstream Slopes Adjacent to Water Bodies – §257.73(d)(1)(vii)

The only water body adjacent to Ash Pond 2 is Pond 1, located west of Ash Pond 2. When operated, Pond 1 will impound water against the western downstream slope of Ash Pond 2. The slope stability analyses presented in Geosyntec (2016e) consider a "low pool" condition for Pond 1 where no water is present in Pond 1 to provide a stabilizing force on the downstream face of the western slope of Ash Pond 2.

When Pond 1 is operated and water is impounded against the downstream face of the western slope of Ash Pond 2, the impounded water is unlikely to infiltrate into the embankment because Pond 1 is lined with a 60-mil HDPE geomembrane. Therefore, a rapid drawdown condition is not applicable to the western embankment of Ash Pond 2 and was not analyzed.

3.8 Structural Stability Assessment Deficiencies - §257.73(d)(2)

No structural stability deficiencies associated with Ash Pond 2 were identified in this initial structural stability assessment and no corrective measures are required.

3.9 Annual Inspection Requirement - §257.83(b)(4)(ii)

In accordance with §257.83(b)(4)(ii), submittal of this structural stability assessment precludes the requirement of an annual inspection under §257.83(b) for Ash Pond 2 during the 2016 calendar year.

4. Safety Factor Assessment

This section describes the initial safety factor assessment for Ash Pond 2 and the methodology used to perform the assessment in accordance with \$257.73(e)(1). This assessment summarizes slope stability analyses of the critical embankment cross-section, shown in Figure 3, and evaluation of stability of the retaining wall southeast of the pond.

4.1 Slope Stability Methodology

Limit equilibrium slope stability analyses were performed to evaluate the stability of the embankments for Ash Pond 2. The process involved performing two-dimensional analyses on the critical cross-section for Ash Pond 2 using Spencer's Method as coded in the computer program SLOPE/W (Version 8.15.4.11512, www.geoslope.com) which satisfies vertical and horizontal force equilibrium and moment equilibrium (Geosyntec, 2016e). For each cross section analyzed, the program searches for the sliding surface that produces the lowest factor of safety

Ash Pond 2, Joliet 29 Station Structural Stability and Safety Factor Assessments October 2016

(FS). Factor of safety is defined as the ratio of the shear forces/moments resisting movement along a sliding surface to the forces/moments driving the instability.

Subsurface stratigraphy, groundwater conditions, and engineering parameters for the embankment and foundation materials were developed based on previous subsurface investigations performed at the Site (Geosyntec, 2016b and Geosyntec, 2016e).

4.2 Slope Stability Analyses

Four cases were analyzed to satisfy the safety factor assessment requirements in §257.73(e) (Geosyntec, 2016e).

4.2.1 Static, Long-Term Maximum Storage Pool Loading – §257.73(e)(1)(i)

Pursuant to \$257.73(e)(1)(i) a static, long-term condition with the maximum operating pool loading on the embankments was evaluated. For Ash Pond 2, this condition included a pool elevation at 2 feet below the top of the embankments (Geosyntec, 2016e).

4.2.2 Static, Maximum Storage Pool Loading – §257.73(e)(1)(ii)

The conditions for \$257.73(e)(1)(i) are identical to \$257.73(e)(1)(i) with the exception of the pool elevation, which is set at the top of the embankment (Geosyntec, 2016e).

4.2.3 Seismic – §257.73(e)(1)(iii)

Pursuant to §257.73(e)(1)(iii), a seismic condition for Ash Pond 2 was also analyzed. Seismic stability was evaluated with a pseudostatic analysis that uses constant horizontal accelerations to represent the effects of earthquake shaking. The horizontal accelerations are represented in SLOPE/W by a horizontal seismic coefficient. The horizontal seismic coefficient used for analysis was based on a peak ground acceleration with a 2 percent probability of exceedance in 50 years (Geosyntec, 2016g).

4.2.4 Liquefaction – §257.73(e)(1)(i)

The Ash Pond 2 embankment soils are assumed to be unsaturated. Based on quarterly groundwater monitoring in the vicinity of Ash Pond 2, groundwater is approximately 8 feet below the bottom of the pond. Further, the embankments are lined with an HDPE geomembrane liner that limits infiltration into the embankments and makes saturation of the embankments unlikely. Because the embankment soils are unlikely to be saturated and therefore are not considered susceptible to liquefaction, the calculation of a factor of safety for post-liquefaction slope stability is not required.

Ash Pond 2, Joliet 29 Station Structural Stability and Safety Factor Assessments October 2016

4.3 Results

The results of the slope stability analysis for the critical cross section of the Ash Pond 2 embankments are summarized in Table 1 below and presented in Figures 4 through 6 (Geosyntec 2016e).

Section	Safety Factor						
Section	257.73(e)(1)(i)	257.73(e)(1)(iii)	257.73(e)(1)(iv)				
1	≥1.50	≥1.40	≥1.00	N/A			

 Table 1: Safety Factor Results

The results of the slope stability analyses meet the minimum safety factors requirements presented in \$257.73(e)(1)(i) through \$257.73(e)(1)(iii).

4.4 Retaining Wall Analyses

Stability of the retaining wall located on the southwest portion of the southern embankment of Ash Pond 2 was also evaluated (Geosyntec, 2016h). Construction drawings for the wall and site observations indicate that it is a reinforced concrete cantilever type wall. As-built construction documentation for the wall was not available. Inputs for the analyses were based on information provided in the construction drawings and developed from subsurface investigations at the Site (Geosyntec, 2016h and Geosyntec, 2016b). Factors of safety for bearing capacity, overturning, and sliding were calculated for the wall and results indicate that the factors of safety exceed minimum industry standard values (Geosyntec, 2016h).

Ash Pond 2, Joliet 29 Station Structural Stability and Safety Factor Assessments October 2016

5. Limitations and Certification

This initial periodic structural stability and safety factor assessment meets the requirements of §257.73(d) and §257.73(e) of the Code of Federal Regulations Title 40, Part 257, Subpart D, and was prepared in accordance with current practices and the standard of care exercised by scientists and engineers performing similar tasks in the field of civil engineering. The contents of this report are based solely on the observations of the conditions observed by Geosyntec personnel and information provided to Geosyntec by Midwest Generation. Consistent with applicable professional standards of care, our opinions and recommendations were based in part on data furnished by others, which was consistent with other information that we developed in the course of our performance of the scope of services. The information contained in this report is intended for use solely by Midwest Generation and their subconsultants.

annin mining THINN MANUTAR in manual in the

Smle

Jane W. Soule, P.E. Illinois Professional Engineer No. 062-067766 Expiration Date: 11/30/2017

engineers | scientists | innovators

Ash Pond 2, Joliet 29 Station Structural Stability and Safety Factor Assessments October 2016

6. References

Geosyntec (2016a). History of Construction Report, Ash Pond 2, Joliet 29 Station, October.

Geosyntec (2016b). Soil Properties Calculations, Joliet 29 Station, October.

Geosyntec (2016c). Annual Inspection Report, Ash Pond 2, Joliet 29 Station, 18 January 2016.

Geosyntec (2016d). Liquefaction Calculations, Ash Pond 2, Joliet 29 Station, October.

Geosyntec (2016e). Slope Stability Calculations, Joliet 29 Station, October.

Geosyntec (2016f). Inflow Design Flood Control System Plan, Ash Pond 2, Joliet 29 Generating Station, October.

Geosyntec (2016g). Seismic Coefficient Calculations, Joliet 29 Station, October.

Geosyntec (2016h). Retaining Wall Calculations, Joliet 29 Station, October.

Idriss and Boulanger (2008). "Soil Liquefaction During Earthquakes". Earthquake Engineering Research Institute, MNO-12.

Attachments

- Figure 1 Site Location
- Figure 2 Hydraulic Structure Locations
- Figure 3 Critical Cross Section
- Figure 4 Slope Stability Output, Section 1 257.73(e)(1)(i)
- Figure 5 Slope Stability Output, Section 1 257.73(e)(1)(ii)
- Figure 6 Slope Stability Output, Section 1 257.73(e)(1)(iii)

The following are attachments to the testimony of Andrew Rehn.

ATTACHMENT 5

Submitted to Electric Energy, Inc. 2200 Portland Road Metropolis, IL 62960

Submitted by AECOM 1001 Highlands Plaza Drive West Suite 300 St. Louis, MO 63110

October 2016

CCR Rule Report: Initial Safety Factor Assessment For East Ash Pond At Joppa Power Station

1 Introduction

This Coal Combustion Residual (CCR) Rule Report documents that the East Ash Pond at the Electric Energy, Inc. (EEI) Joppa Power Station meets the safety factor assessment requirements specified in 40 Code of Federal Regulations (CFR) §257.73(e). The East Ash Pond is located near Joppa, Illinois in Massac County, approximately 0.1 miles northeast of the Joppa Power Station. The East Ash Pond serves as the ash impoundment basin for CCRs produced at the Joppa Power Station.

The East Ash Pond is an existing CCR surface impoundment as defined by 40 CFR §257.53. The CCR Rule requires that the initial safety factor assessment for an existing CCR surface impoundment be completed by October 17, 2016.

The owner or operator of the CCR unit must obtain a certification from a qualified professional engineer stating that the initial safety factor assessment meets the requirements of 40 CFR § 257.73(e). The owner or operator must prepare a safety factor assessment every five years.
2 Initial Safety Factor Assessment

40 CFR §257.73(e)(1)

The owner or operator must conduct initial and periodic safety factor assessments for each CCR unit and document whether the calculated factors of safety for each CCR unit achieve the minimum safety factors specified in (e)(1)(i) through (iv) of this section for the critical cross section of the embankment. The critical cross section is the cross section anticipated to be the most susceptible of all cross sections to structural failure based on appropriate engineering considerations, including loading conditions. The safety factor assessments must be supported by appropriate engineering calculations.

(i) The calculated static factor of safety under the long-term, maximum storage pool loading condition must equal or exceed 1.50.

(ii) The calculated static factor of safety under the maximum surcharge pool loading condition must equal or exceed 1.40.

(iii) The calculated seismic factor of safety must equal or exceed 1.00.

(iv) For dikes constructed of soils that have susceptibility to liquefaction, the calculated liquefaction factor of safety must equal or exceed 1.20.

A geotechnical investigation program and stability analyses were performed to evaluate the design, performance, and condition of the earthen dikes of the East Ash Pond. The exploration consisted of hollow-stem auger borings, cone penetration testing with seismic wave velocity measurements and pore pressure dissipation testing, piezometer installation and monitoring, and a laboratory program including strength and index testing. Data collected from the geotechnical investigation, available design drawings, construction records, inspection reports, previous engineering investigations, and other pertinent historic documents were utilized to perform the safety factor assessment and geotechnical analyses.

The East Ash Pond embankment is generally medium stiff to stiff and overlies predominantly alluvial foundation materials. The alluvial foundation consists of soft to stiff clay overlying medium dense to dense sand. A zone of sluiced flyash that existed before the embankment dike was constructed was encountered below the compacted embankment in the southeast corner. The zone of sluiced flyash was modified by the installation of Deep Mixing Method (DMM) ground improvement technology using the wet soil mixing method. Explorations were terminated in the soil overburden and were not extended to bedrock. The phreatic surface is typically at or slightly above the embankment/foundation interface.

Six (6) representative cross sections were analyzed using limit equilibrium slope stability analysis software to evaluate stability of the perimeter dike system and foundations. The cross sections were located to represent critical surface geometry, subsurface stratigraphy, and phreatic conditions across the CCR unit. Each cross section was evaluated for each of the loading conditions stipulated in §257.73(e)(1).

The Soils Susceptible to Liquefaction loading condition, §257.73(e)(1)(iv), was not evaluated because a liquefaction susceptibly evaluation did not find soils susceptible to liquefaction within the East Ash Pond dikes. As a result, this loading condition is not applicable to the East Ash Pond at the Joppa Power Station.

Results of the Initial Safety Factor Assessments, for the critical cross-section for each loading condition (i.e., the lowest calculated factor of safety out of the cross sections analyzed for each loading condition), are listed in Table 1.

Loading Conditions	§257.73(e)(1) Subsection	Minimum Factor of Safety	Calculated Factor of Safety
Maximum Storage Pool Loading	(i)	1.50	1.59
Maximum Surcharge Pool Loading	(ii)	1.40	1.57
Seismic	(iii)	1.00	1.01
Soils Susceptible to Liquefaction	(iv)	1.20	Not Applicable

Table 1 – Summary	y of Initial Safet	y Factor Assessments
-------------------	--------------------	----------------------

Based on this evaluation, the East Ash Pond meets the requirements in §257.73(e)(1).

Certification Statement 3

CCR Unit: Electric Energy, Inc.; Joppa Power Station; East Ash Pond

I, Victor A. Modeer, being a Registered Professional Engineer in good standing in the State of Illinois, do hereby certify, to the best of my knowledge, information, and belief that the information contained in this CCR Rule Report, and the underlying data in the operating record, has been prepared in accordance with the accepted practice of engineering. I certify, for the above-referenced CCR Unit, that the initial safety factor assessment dated October 14, 2016 meets the requirements of 40 CFR §257.73.

Modeer Vr

Printed Name

4/16 14

Date

About AECOM

AECOM (NYSE: ACM) is a global provider of professional technical and management support services to a broad range of markets, including transportation, facilities, environmental, energy, water and government. With nearly 100,000 employees around the world, AECOM is a leader in all of the key markets that it serves. AECOM provides a blend of global reach, local knowledge, innovation, and collaborative technical excellence in delivering solutions that enhance and sustain the world's built, natural, and social environments. A Fortune 500 company, AECOM serves clients in more than 100 countries and has annual revenue in excess of \$19 billion.

More information on AECOM and its services can be found at <u>www.aecom.com</u>.

1001 Highlands Plaza Drive Wes Suite 300 St. Louis, MO 63110 1-314-429-0100

ATTACHMENT 6

Submitted to Kincaid Generation, LLC 199 Route 104 Kincaid, IL 62540

Submitted by AECOM 1001 Highlands Plaza Drive West Suite 300 St. Louis, MO 63110

October 2016

CCR Rule Report: Initial Safety Factor Assessment

For

Kincaid Ash Pond At Kincaid Power Station

1 Introduction

This Coal Combustion Residual (CCR) Rule Report documents that the Kincaid Ash Pond at the Kincaid Generation, LLC Kincaid Power Station meets the safety factor assessment requirements specified in 40 Code of Federal Regulations (CFR) §257.73(e). The Kincaid Ash Pond is located near Kincaid, Illinois in Christian County, approximately 0.1 miles northeast of the Kincaid Power Station. The Kincaid Ash Pond serves as the wet impoundment basin for CCR produced by the Kincaid Power Station.

The Kincaid Ash Pond is an existing CCR surface impoundment as defined by 40 CFR §257.53. The CCR Rule requires that the initial safety factor assessment for an existing CCR surface impoundment be completed by October 17, 2016.

The owner or operator of the CCR unit must obtain a certification from a qualified professional engineer stating that the initial safety factor assessment meets the requirements of 40 CFR § 257.73(e). The owner or operator must prepare a safety factor assessment every five years.

2 Initial Safety Factor Assessment

40 CFR §257.73(e)(1)

The owner or operator must conduct initial and periodic safety factor assessments for each CCR unit and document whether the calculated factors of safety for each CCR unit achieve the minimum safety factors specified in (e)(1)(i) through (iv) of this section for the critical cross section of the embankment. The critical cross section is the cross section anticipated to be the most susceptible of all cross sections to structural failure based on appropriate engineering considerations, including loading conditions. The safety factor assessments must be supported by appropriate engineering calculations.

(i) The calculated static factor of safety under the long-term, maximum storage pool loading condition must equal or exceed 1.50.

(ii) The calculated static factor of safety under the maximum surcharge pool loading condition must equal or exceed 1.40.

(iii) The calculated seismic factor of safety must equal or exceed 1.00.

(iv) For dikes constructed of soils that have susceptibility to liquefaction, the calculated liquefaction factor of safety must equal or exceed 1.20.

A geotechnical investigation program and stability analyses were performed to evaluate the design, performance, and condition of the earthen dikes of the Kincaid Ash Pond. The exploration consisted of hollow-stem auger borings, cone penetration tests, installation of piezometers, and laboratory program including strength, hydraulic conductivity, consolidation, and index testing. Data collected from the geotechnical investigation, available design drawings, construction records, inspection reports, previous engineering investigations, and other pertinent historic documents were utilized to perform the safety factor assessment and geotechnical analyses.

In general, the subsurface conditions at the Kincaid Ash Pond consist of medium stiff to very stiff embankment fill (clay) overlying soft to very stiff clay foundation soils, which in turn overlies hard glacial till (clay). Phreatic water is typically at or slightly above the embankment/foundation interface.

Five (5) representative cross sections were analyzed using limit equilibrium slope stability analysis software to evaluate stability of the perimeter dike system and foundations. The cross sections were located to represent critical surface geometry, subsurface stratigraphy, and phreatic conditions across the site. Each cross section was evaluated for each of the loading conditions stipulated in §257.73(e)(1).

The Soils Susceptible to Liquefaction loading condition, §257.73(e)(1)(iv), was not evaluated because a liquefaction susceptibly evaluation did not find soils susceptible to liquefaction within the Kincaid Ash Pond dikes. As a result, this loading condition is not applicable to the Kincaid Ash Pond.

Results of the Initial Safety Factor Assessments for the critical cross-section for each loading condition are listed in Table 1 (i.e. the table identifies the lowest calculated safety of factor calculated for any one of the five analyzed cross sections for each loading condition).

Loading Conditions	§257.73(e)(1) Subsection	Minimum Factor of Safety	Calculated Factor of Safety
Maximum Storage Pool Loading	(i)	1.50	1.57
Maximum Surcharge Pool Loading	(ii)	1.40	1.57
Seismic	(iii)	1.00	1.27
Soils Susceptible to Liquefaction	(iv)	1.20	Not Applicable

 Table 1 – Summary of Initial Safety Factor Assessments

Based on this evaluation, the Kincaid Ash Pond meets the requirements in §257.73(e)(1).

3 Certification Statement

CCR Unit: Kincaid Generation, LLC; Kincaid Power Station; Kincaid Ash Pond

I, Victor A. Modeer, being a Registered Professional Engineer in good standing in the State of Illinois, do hereby certify, to the best of my knowledge, information, and belief that the information contained in this CCR Rule Report, and the underlying data in the operating record, has been prepared in accordance with the accepted practice of engineering. I certify, for the above-referenced CCR Unit, that the initial safety factor assessment dated October 12, 2016 meets the requirements of 40 CFR §257.73(e).

Printed Name Data

Date

About AECOM

AECOM (NYSE: ACM) is a global provider of professional technical and management support services to a broad range of markets, including transportation, facilities, environmental, energy, water and government. With nearly 100,000 employees around the world, AECOM is a leader in all of the key markets that it serves. AECOM provides a blend of global reach, local knowledge, innovation, and collaborative technical excellence in delivering solutions that enhance and sustain the world's built, natural, and social environments. A Fortune 500 company, AECOM serves clients in more than 100 countries and has annual revenue in excess of \$19 billion.

More information on AECOM and its services can be found at <u>www.aecom.com</u>.

1001 Highlands Plaza Drive Wes Suite 300 St. Louis, MO 63110 1-314-429-0100

ATTACHMENT 7

Submitted to Illinois Power Generating Company 6725 North 500th Street Newton, IL 62448

Submitted by AECOM 1001 Highlands Plaza Drive West Suite 300 St. Louis, MO 63110

October 2016

CCR Rule Report: Initial Safety Factor Assessment

For

Primary Ash Pond

At Newton Power Station

1 Introduction

This Coal Combustion Residual (CCR) Rule Report documents that the Primary Ash Pond at the Illinois Power Generating Company Newton Power Station meets the safety factor assessment requirements specified in 40 Code of Federal Regulations (CFR) §257.73(e). The Primary Ash Pond is located near Newton, Illinois in Jasper County, approximately 0.2 miles southwest of the Newton Power Station. The Primary Ash Pond serves as the wet impoundment basin for CCR produced by the Newton Power Station.

The Primary Ash Pond is an existing CCR surface impoundment as defined by 40 CFR §257.53. The CCR Rule requires that the initial safety factor assessment for an existing CCR surface impoundment be completed by October 17, 2016.

The owner or operator of the CCR unit must obtain a certification from a qualified professional engineer stating that the initial safety factor assessment meets the requirements of 40 CFR § 257.73(e). The owner or operator must prepare a safety factor assessment every five years.

2 Initial Safety Factor Assessment

40 CFR §257.73(e)(1)

The owner or operator must conduct initial and periodic safety factor assessments for each CCR unit and document whether the calculated factors of safety for each CCR unit achieve the minimum safety factors specified in (e)(1)(i) through (iv) of this section for the critical cross section of the embankment. The critical cross section is the cross section anticipated to be the most susceptible of all cross sections to structural failure based on appropriate engineering considerations, including loading conditions. The safety factor assessments must be supported by appropriate engineering calculations.

(i) The calculated static factor of safety under the long-term, maximum storage pool loading condition must equal or exceed 1.50.

(ii) The calculated static factor of safety under the maximum surcharge pool loading condition must equal or exceed 1.40.

(iii) The calculated seismic factor of safety must equal or exceed 1.00.

(iv) For dikes constructed of soils that have susceptibility to liquefaction, the calculated liquefaction factor of safety must equal or exceed 1.20.

A geotechnical investigation program and stability analyses were performed to evaluate the design, performance, and condition of the earthen dikes of the Primary Ash Pond. The exploration consisted of hollow-stem auger borings, cone penetration testing, piezometer installation and laboratory program including strength, hydraulic conductivity, consolidation, and index testing. Data collected from the geotechnical investigation, available design drawings, construction records, inspection reports, previous engineering investigations, and other pertinent historic documents were utilized to perform the safety factor assessment and geotechnical analyses.

In general, the subsurface conditions at the Primary Ash Pond consist of medium stiff to stiff embankment fill (clay) overlying stiff to hard clay, which in turn overlies very stiff to very hard glacial till. Phreatic water is above the embankment/foundation of the Primary Ash Pond.

Ten (10) representative cross sections were analyzed using limit equilibrium slope stability analysis software to evaluate stability of the perimeter dike system and foundations. The cross sections were located to represent critical surface geometry, subsurface stratigraphy, and phreatic conditions across the site. Each cross section was evaluated for each of the loading conditions stipulated in §257.73(e)(1).

The Soils Susceptible to Liquefaction loading condition, §257.73(e)(1)(iv), was not evaluated because a liquefaction susceptibly evaluation did not find soils susceptible to liquefaction within the Primary Ash Pond dikes. As a result, this loading condition is not applicable to the Primary Ash Pond at the Newton Power Station.

Results of the Initial Safety Factor Assessments for the critical cross-section for each loading condition (i.e., the lowest calculated factor of safety out of the 10 cross sections analyzed for each loading condition) are listed in Table 1.

Loading Conditions	§257.73(e)(1) Subsection	Minimum Factor of Safety	Calculated Factor of Safety
Maximum Storage Pool Loading	(i)	1.50	1.66
Maximum Surcharge Pool Loading	(ii)	1.40	1.66
Seismic	(iii)	1.00	1.07
Soils Susceptible to Liquefaction	(iv)	1.20	Not Applicable

 Table 1 – Summary of Initial Safety Factor Assessments

Based on this evaluation, the Primary Ash Pond meets the requirements in §257.73(e)(1).

3 Certification Statement

CCR Unit: Illinois Power Generating Company; Newton Power Station; Primary Ash Pond

I, Victor A. Modeer, being a Registered Professional Engineer in good standing in the State of Illinois, do hereby certify, to the best of my knowledge, information, and belief that the information contained in this CCR Rule Report, and the underlying data in the operating record, has been prepared in accordance with the accepted practice of engineering. I certify, for the above-referenced CCR Unit, that the initial safety factor assessment dated October 13, 2016 meets the requirements of 40 CFR §257.73(e).

Printed Name

A MODER.S.C. Date

About AECOM

AECOM (NYSE: ACM) is a global provider of professional technical and management support services to a broad range of markets, including transportation, facilities, environmental, energy, water and government. With nearly 100,000 employees around the world, AECOM is a leader in all of the key markets that it serves. AECOM provides a blend of global reach, local knowledge, innovation, and collaborative technical excellence in delivering solutions that enhance and sustain the world's built, natural, and social environments. A Fortune 500 company, AECOM serves clients in more than 100 countries and has annual revenue in excess of \$19 billion.

More information on AECOM and its services can be found at <u>www.aecom.com</u>.

1001 Highlands Plaza Drive Wes Suite 300 St. Louis, MO 63110 1-314-429-0100

ATTACHMENT 8

STRUCTURAL STABILITY AND FACTOR OF SAFETY ASSESSMENT EAST AND WEST ASH BASINS WAUKEGAN STATION OCTOBER 2016

This report presents the initial periodic structural stability and initial safety factor assessment of the East and West Ash Basins (the Basins) at the Waukegan Station (Site) in Waukegan, Illinois (Figure 1). This report addresses the initial structural stability and safety factor assessment requirements of the Coal Combustion Residuals (CCR) regulations, Code of Federal Regulations Title 40, Part 257, Subpart D (referred to as the CCR Rule). These regulations were published in the Federal Register on 17 April 2015 and became effective on 19 October 2015. The Waukegan Station is owned and operated by Midwest Generation, LLC (Midwest Generation). Based on the results provided in this report, the East and West Ash Ponds meet the requirements of §257.73(d) and §257.73(e) of the CCR Rule.

The work presented in this report was performed under the direction of Ms. Jane Soule, P.E., of Geosyntec Consultants Inc. (Geosyntec) in accordance with §257.73(d) and §257.73(e). Mr. Robert White reviewed this report in accordance with Geosyntec's senior review policy.

1. Regulation Requirements - §257.73

Structural integrity criteria for existing CCR impoundments is described in §257.73 and includes structural stability and factor of safety assessments. The East and West Ash Basins meet the minimum size and capacity criteria under §257.73(b) and are subject to the structural stability and safety factor assessments required.

2. Site Conditions

The Basins are co-located in the southeastern portion of the Waukegan Station. A divider berm extends north-south between the Basins. The Basins are irregular in shape, and each includes a finger berm extending from the northern boundary southward approximately 715 feet. The West Ash Basin is approximately 470 feet by 975 feet in plan dimensions with a total plan area of approximately 11.0 acres (including the finger berm and embankment crests). The East Ash Basin is approximately 470 feet by 1,030 feet in plan dimensions with a total plan area of approximately 11.8 acres (including the finger berm and embankment crests).

A retaining wall is located on the downstream side of the north embankment, north of the outlet structures for the Basins.

Based on available documentation and discussions with site personnel, the Basins, in their current configuration, were constructed in the late 1970s. A history of construction for the Basins \$\mathbf{SW0251.08.05 WAUKEGAN SS-FS.F.DOCX} 1

East and West Ash Basins, Waukegan Station Structural Stability and Safety Factor Assessments October 2016

was prepared in accordance with §257.73(c) and describes the design of the Basins and their construction (Geosyntec, 2016a).

3. Structural Stability Assessment

The following subsections address the components of \$257.73(d)(1).

3.1 Foundations and Abutments – §257.73(d)(1)(i)

The East and West Ash Basins consist of fill embankments on all sides. The area west of the West Ash Basin includes fill graded to approximately the same elevation as the west embankment crest. Because no formational material provides lateral structural support for the embankments, there are no abutments associated with the Basins. The remainder of this section addresses the foundation materials for the East and West Ash Basins.

Previous subsurface investigations performed at the Site indicate the foundation materials underlying the embankments for the East and West Ash Basins generally consist of approximately 30 feet of dense, poorly graded sand with some gravel, and silt and silty sand associated with the Henry Formation (Geosyntec, 2016b). Due to the granular nature of the foundation soils (mostly sand and gravel), settlement associated with the construction and operation of the Basins is anticipated to be predominately elastic settlement, which would likely have occurred soon after construction in the late 1970s. Because of the age of the embankments (over 35 years old), the majority of potential consolidation and secondary compression settlement has likely already occurred. Further, the embankments of the Basins were not constructed with abutments or separate engineered zones that would be most susceptible to the adverse effects of differential settlement.

During the initial annual inspection performed for the Basins in accordance with §257.83(b), no visual evidence of adverse effects resulting from settlement was observed (Geosyntec, 2016c). There are no proposed changes in operation which would increase loading conditions on the foundation; therefore, no significant settlement of the foundation materials underlying the embankments is anticipated to occur in the future and the settlement of the foundation is not anticipated to impact the integrity of the impoundment embankments.

A factor of safety against the triggering of liquefaction was calculated for saturated foundation materials underlying the Basins' embankments. The factor of safety was calculated based methods outlined in Idriss and Boulanger (2008) using information obtained from field explorations, including borings, Cone Penetration Test (CPT) soundings, laboratory data (Geosyntec, 2016b), and seismic data (Geosyntec, 2016d). The liquefaction triggering analyses shows a very low likelihood of liquefaction occurring in the foundation materials underlying the embankments (Geosyntec, 2016d).

East and West Ash Basins, Waukegan Station Structural Stability and Safety Factor Assessments October 2016

3.2 Upstream Slope Protection – §257.73(d)(1)(ii)

The West and East Basins are lined with a 60-mil high density polyethylene (HDPE) geomembrane that protects the interior basin slopes from erosion, the effects of wave action, and mitigates potential effects of rapid drawdown.

3.3 Dike Compaction – §257.73(d)(1)(iii)

Documentation of as-built construction conditions for the East and West Ash Basin embankments was not available at the time of this report. However, available construction drawings from 1977 indicated that embankment fill was to be compacted to a minimum of 95 percent relative compaction as determined by Modified Proctor testing. No recent quantitative evaluation of the degree of compaction of the embankments was performed on the embankments in their current state; however, slope stability analyses shows the embankments for the East and West Ash Basins are sufficient to withstand the range of loading conditions in the CCR units (Geosyntec, 2016e).

3.4 Downstream Slope Vegetation – §257.73(d)(1)(iv)

The northern and southern downstream slopes of the West and East Ash Basins are covered with established vegetation. The eastern downstream slope of the East Ash Basin has been recently covered in erosion control matting and seeded. Based on site observations, the existing surface conditions of the slopes provide adequate slope protection.

3.5 Spillway – §257.73(d)(1)(v)

The West and East Basins were designed and constructed, and are operated and maintained, without spillways. Inflows for the Basins consist solely of regulated flows from plant operations and precipitation that falls within the surface area of the Basins and embankment crests. There is no significant run-on to the Basins. Subsequently, surface water levels are maintained by regulating inflow from plant operations, regulating outflow quantities, and monitoring and maintaining freeboard to accommodate precipitation from the design storm event. An inflow design flood control system plan has been prepared to document that the Basins adequately manage flow from the design event (Geosyntec, 2016f).

3.6 Structural Integrity of Hydraulic Structures – §257.73(d)(1)(vi)

Hydraulic structures passing through or beneath the embankments of the East and West Ash Basins consist of six pipes and conveyance structures associated with the inlet and outlet structures of the Basins. These structures and pipes were inspected between 1 June 2016 and 7 June 2016 by a company specializing in video camera pipe inspections. Inspections consisted

East and West Ash Basins, Waukegan Station Structural Stability and Safety Factor Assessments October 2016

only of the length of the pipe or structure that passes through or beneath the Basins' embankments. The inspected structures and pipes related to the East and West Ash Basins are presented on Figure 2.

The video inspections showed no significant deterioration, deformation, distortion, bedding deficiencies, sedimentation, or debris that would negatively affect the operation of Pipes 1, 2, 3, and 5. The video inspections identified isolated areas of deformation and deterioration of Pipes 4E and 4W, which are 24-inch diameter concrete pipes with invert locations at the bottom of the outlet structures for the East and West Ash Basins, respectively. These pipes are located under the north embankment and are utilized for dewatering the outlet structure. Repairs were made to Pipe 4E to mitigate the isolated areas of deformation and deterioration identified during the inspection. The valve for controlling flow into Pipe 4W has been closed by Site personnel, and Pipe 4W will not be used until a repair is completed. Pipe 4W is not required for normal operation of the West Ash Basin.

3.7 Downstream Slopes Adjacent to Water Bodies – §257.73(d)(1)(vii)

Water bodies near the East and West Ash Basins include a drainage channel located south of the Basins and marsh area east of the Basins. Stability analyses presented in Section 3 demonstrate structural stability with the water body at a "low pool" condition where there is little or no stabilizing force present on the downstream slope of the embankments.

Significant inundation of the downstream slopes of the East and West Ash Basins from the water body is unlikely, and the generally coarse-grained embankment fill materials that are relatively free-draining make a rapid drawdown analysis not applicable. Therefore, a rapid drawdown condition is not anticipated to impact structural stability of the impoundment embankments.

3.8 Structural Stability Assessment Deficiencies - §257.73(d)(2)

A structural stability deficiency associated Pipe 4W was identified in this initial structural stability assessment. Geosyntec suggests relining the interior of the deficient portions of the pipe as a corrective action. The pipe will remain out of service until the repair is complete. Documentation detailing the corrective measures taken to repair the pipe will be prepared after the repair is complete.

3.9 Annual Inspection Requirement - §257.83(b)(4)(ii)

In accordance with §257.83(b)(4)(ii), submittal of this structural stability assessment precludes the requirement of an annual inspection under §257.83(b) for the East and West Ash Basins during the 2016 calendar year. Deficiencies identified in the initial annual inspection for the East

East and West Ash Basins, Waukegan Station Structural Stability and Safety Factor Assessments October 2016

and West Ash Basins were corrected as documented in the Notice of Remedy prepared in response to the initial annual inspection.

4. Safety Factor Assessment

This section describes the initial safety factor assessment for the East and West Ash Basins and the methodology used to perform the assessment in accordance with \$257.73(e)(1). This assessment includes slope stability analyses of the critical embankment cross-sections for each basin, shown in Figure 3, and evaluation of stability of the retaining wall north of the Basins.

4.1 Slope Stability Methodology

Limit equilibrium slope stability analyses were performed to evaluate the stability of the embankments for the East and West Ash Basins. The process involved performing two-dimensional analyses on the critical cross-sections for each basin using Spencer's Method as coded in the computer program SLOPE/W (Version 8.15.4.11512, www.geoslope.com) which satisfies vertical and horizontal force equilibrium and moment equilibrium (Geosyntec, 2016e). For each cross section analyzed, the program searches for the sliding surface that produces the lowest factor of safety (FS). Factor of safety is defined as the ratio of the shear forces/moments resisting movement along a sliding surface to the forces/moments driving the instability.

Subsurface stratigraphy, groundwater conditions, and engineering parameters for the embankment and foundation materials were developed based on previous subsurface investigations performed at the Site (Geosyntec, 2016b and Geosyntec, 2016e).

4.2 Slope Stability Analyses

As presented in Table 1, four cases were analyzed to satisfy the safety factor assessment requirements in §257.73(e) (Geosyntec, 2016e).

4.2.1 Static, Long-Term Maximum Storage Pool Loading – §257.73(e)(1)(i)

Pursuant to \$257.73(e)(1)(i) a static, long-term condition with the maximum operating pool loading on the embankments was evaluated. For the East and West Ash Basins, this condition included a pool elevation 2 feet below the lowest point of the embankment crest (Geosyntec, 2016e).

4.2.2 Static, Maximum Storage Pool Loading – §257.73(e)(1)(ii)

The conditions for \$257.73(e)(1)(i) are identical to \$257.73(e)(1)(i) with the exception of the pool elevation, which is set at the lowest points of the embankment crest (Geosyntec, 2016e).

SW0251.08.05 WAUKEGAN SS-FS.F.DOCX

East and West Ash Basins, Waukegan Station Structural Stability and Safety Factor Assessments October 2016

4.2.3 Seismic – §257.73(e)(1)(iii)

Pursuant to §257.73(e)(1)(iii), a seismic condition for East and West Ash Basins was also analyzed. Seismic stability was evaluated with a pseudostatic analysis that uses constant horizontal accelerations to represent the effects of earthquake shaking. The horizontal accelerations are represented in SLOPE/W by a horizontal seismic coefficient. The horizontal seismic coefficient used for analysis was based on a peak ground acceleration with a 2 percent probability of exceedance in 50 years (Geosyntec, 2016g).

4.2.4 Liquefaction – §257.73(e)(1)(iv)

The majority of the embankment soils for the East and West Ash Basins are not considered susceptible to liquefaction because saturation of the embankment soils is unlikely based on the presence of a geomembrane liner system. Based on the design phreatic surface discussed in Geosyntec (2016b), a limited portion of the bottom of the embankments may become saturated from groundwater. Liquefaction triggering analyses of these saturated embankment soils indicate that liquefaction and associated post-liquefaction shear strength loss is unlikely for the seismic design event (Geosyntec, 2016d). Because the likelihood of liquefaction and associated shear strength loss of the embankment soils is very low, post-liquefaction conditions are represented by the static factor of safety analyses.

4.3 Results

The results of the slope stability analysis for the critical cross sections of the East and West Ash Basin embankments are summarized in Table 1 below and presented in Figures 4 through 9 (Geosyntec 2016e).

Section	Safety Factor			
	257.73(e)(1)(i)	257.73(e)(1)(ii)	257.73(e)(1)(iii)	257.73(e)(1)(iv)
1	≥1.50	≥1.40	≥1.00	≥1.20
2	≥1.50	≥1.40	≥1.00	≥1.20

These results meet the factor of safety requirements presented in $\frac{257.73(e)(1)(i)}{1000}$ through $\frac{257.73(e)(1)(iv)}{10000}$.

4.4 Retaining Wall Analyses

Stability of the retaining wall located north of the East and West Ash Basins was also evaluated (Geosyntec, 2016h). Construction drawings for the wall were not available, but Geosyntec personnel observed that the wall is a metal bin wall, a form of gravity retaining structure similar to a crib wall, built by combining "bins", or cells filled with soil. Inputs for the analyses were based on field observations and measurements of the wall the subsurface investigations at the

East and West Ash Basins, Waukegan Station Structural Stability and Safety Factor Assessments October 2016

Site (Geosyntec, 2016h and Geosyntec, 2016b). Factors of safety for bearing capacity, overturning, and sliding were calculated for the wall based on methods for evaluating a cantilever retaining wall in Das (2007). Results show that the factors of safety for the wall exceed minimum industry standard values (Geosyntec, 2016h).

5. Limitations and Certification

This initial periodic structural stability and safety factor assessment meets the requirements of §257.73(d) and §257.73(e) of the Code of Federal Regulations Title 40, Part 257, Subpart D, and was prepared in accordance with current practices and the standard of care exercised by scientists and engineers performing similar tasks in the field of civil engineering. The contents of this report are based solely on the observations of the conditions observed by Geosyntec personnel and information provided to Geosyntec by Midwest Generation. Consistent with applicable professional standards of care, our opinions and recommendations were based in part on data furnished by others, which was consistent with other information that we developed in the course of our performance of the scope of services. The information contained in this report is intended for use solely by Midwest Generation and their subconsultants.

unninninninnin in Supervision Superv ,00 mannuni LICENSED OFESSIONAL ane W. Soule, P.E. COF ILLINOS Illinois Professional Engineer No. 062-067766 Expiration Date: 11/30/2017

SW0251.08.05 WAUKEGAN SS-FS.F

East and West Ash Basins, Waukegan Station Structural Stability and Safety Factor Assessments October 2016

6. References

- Das, 2007. "Principles of Foundation Engineering," Sixth edition. Thomson Canada Limited.
- Geosyntec, 2016a. History of Construction Report, East and West Ash Basins, Waukegan Station, October.
- Geosyntec, 2016b. East and West Ash Basin Soil Properties Calculation, Waukegan Station, October.
- Geosyntec, 2016c. Annual Inspection Report, East and West Ash Basin, Waukegan Station, 18 January 2016.
- Geosyntec, 2016d. East and West Ash Basin Liquefaction Calculations, Waukegan Station, October.
- Geosyntec, 2016e. East and West Ash Basin Slope Stability Calculations, Waukegan Station, October.
- Geosyntec, 2016f. Inflow Design Flood Control System Plan, West and East Ash Basins, Waukegan Generating Station, October.
- Geosyntec, 2016g. East and West Ash Basin Seismic Coefficient Calculations, Waukegan Station, October.
- Geosyntec, 2016h. East and West Ash Basin Retaining Wall Calculations, Waukegan, October.
- Idriss and Boulanger, 2008. "Soil Liquefaction During Earthquakes". Earthquake Engineering Research Institute, MNO-12.

Attachments

- Figure 1 Site Location
- Figure 2 Pipe Locations
- Figure 3 Slope Stability Cross Sections
- Figure 4 Slope Stability Output, Section 1 257.73(e)(1)(i)
- Figure 5 Slope Stability Output, Section 1 257.73(e)(1)(ii)
- Figure 6 Slope Stability Output, Section 1 257.73(e)(1)(iii)
- Figure 7 Slope Stability Output, Section 2 257.73(e)(1)(i)
- Figure 8 Slope Stability Output, Section 2 257.73(e)(1)(ii)
- Figure 9 Slope Stability Output, Section 2 257.73(e)(1)(iii)

The following are attachments to the testimony of Andrew Rehn.

ATTACHMENT 9

FINAL REPORT ROUND 10 DAM ASSESSMENT DYNEGY MIDWEST GENERATION, LLC – HENNEPIN POWER STATION ACTIVE EAST ASH POND SYSTEM, EAST ASH POND SYSTEM, WEST ASH POND SYSTEM HENNEPIN, ILLINOIS

PREPARED FOR:

U.S. Environmental Protection Agency 1200 Pennsylvania Avenue, NW Washington, DC 20460

PREPARED BY:

GZA GeoEnvironmental, Inc. One Edgewater Drive Norwood, Ma 02062 GZA File No. 01.0170142.30

FINAL REPORT ROUND 10 DAM ASSESSMENT DYNEGY MIDWEST GENERATION, LLC – HENNEPIN POWER STATION ACTIVE EAST ASH POND SYSTEM, EAST ASH POND SYSTEM, WEST ASH POND SYSTEM HENNEPIN, ILLINOIS

PREPARED FOR:

U.S. Environmental Protection Agency 1200 Pennsylvania Avenue, NW Washington, DC 20460

PREPARED BY:

GZA GeoEnvironmental, Inc. One Edgewater Drive Norwood, Ma 02062 GZA File No. 01.0170142.30

GZA GeoEnvironmental, Inc. Engineers and Scientists

December 6, 2012 GZA File No. 170142.30

Mr. Stephen Hoffman U.S. Environmental Protection Agency 1200 Pennsylvania Avenue, NW Washington, DC 20460

RE: FINAL Assessment of Dam Safety of Coal Combustion Surface Impoundments at the Hennepin Power Station

Dear Mr. Hoffman,

One Edgewater Drive Norwood, Massachusetts 02062 Phone: 781-278-3700 Fax: 781-278-5701 http://www.gza.com In accordance with our proposal 01.P0000177.11 dated March 28, 2011, and U.S. Environmental Protection Agency (EPA) Contract No. EP10W001313, Order No. EP-B115-00049, GZA GeoEnvironmental, Inc. (GZA) has completed our assessment of the Hennepin Power Station Coal Combustion Waste (CCW) Impoundments located in Hennepin, Illinois. The site visit was conducted on May 23, 2011. The purpose of our efforts was to provide the EPA with a site specific assessment of the impoundments to assist EPA in assessing the structural stability of the impoundments under the authority of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Section 104(e). We are submitting one hard copy and one CD-ROM copy of this Final Report directly to the EPA.

Based on our visual assessment, and in accordance with the EPA's criteria, the Active East Ash Pond System, West Ash Pond System, and East Ash Pond System are currently in **POOR** condition in our opinion. Further discussion of our evaluation and recommended actions are presented in the Task 3 Dam Assessment Report. The report includes: (a) a completed Coal Combustion Dam Assessment Checklist Form for each Basin; (b) a field sketch; and (c) selected photographs with captions. Our services and report are subject to the Limitations found in **Appendix A** and the Terms and Conditions of our contract agreement.

We are happy to have been able to assist you with this inspection and appreciate the opportunity to continue to provide you with dam engineering consulting services. Please contact the undersigned if you have any questions or comments regarding the content of this Task 3 Dam Assessment Report.

Sincerely,

GZA GeoEnvironmental, Inc.

Doug P. Simon, P.E Geologic Engineer doug.simon@gza.com

Peter H. Baril, P.E. (MA) Consultant Reviewer peter.baril@gza.com

Patrick J. Harrison, P.E. Senior Geotechnical Consultant patrick.harrison@gza.com

Copyright[©] 2012 GZA GeoEnvironmental, Inc.

PREFACE

The assessment of the general condition of the dams/impoundment structures reported herein was based upon available data and visual inspections. Detailed investigations and analyses involving topographic mapping, subsurface investigations, testing and detailed computational evaluations were beyond the scope of this report.

In reviewing this report, it should be realized that the reported condition of the dams and/or impoundment structures was based on observations of field conditions at the time of inspection, along with data available to the inspection team. In cases where an impoundment is lowered or drained prior to inspection, such action, while improving the stability and safety of the dam, removes the normal load on the structure and may obscure certain conditions, which might otherwise be detectable if inspected under the normal operating environment of the structure.

It is critical to note that the condition of the dam and/or impoundment structures depends on numerous and constantly changing internal and external conditions, and is evolutionary in nature. It would be incorrect to assume that the reported condition of the dam will continue to represent the condition of the dam at some point in the future. Only through continued care and inspection can there be any chance that unsafe conditions be detected.

Prepared by:

GZA GeoEnvironmental, Inc.

Patrick Harrison, P.E.

License No.: 062.034946 Senior Geotechnical Consultant GZA GeoEnvironmental, Inc.

EXECUTIVE SUMMARY

This Assessment Report presents the results of a visual assessment of the Dynegy Midwest Generation, LLC. (Dynegy) – Hennepin Power Station (HPS) Coal Combustion Waste (CCW) Impoundments located at 13498 E 800th Street, Hennepin, Illinois. These assessments were performed on May 23, 2011 by representatives of GZA GeoEnvironmental, Inc (GZA), accompanied by representatives of Dynegy.

The HPS is a two-unit coal-fired power plant, with a maximum generating capacity of approximately 310 Megawatts. Commercial operation of the facility began in the 1950's. Earthen and fly ash embankment CCW Impoundments (Active East Ash Pond System, East Ash Pond System, and West Ash Pond System) were constructed in conjunction with the HPS facility for the purpose of storing and disposing non-recyclable CCW from the HPS facility and clarification of water prior to discharge.

The current HPS operations use the Active East Ash Pond (AEAPS) for disposal of CCW products. The AEAPS consists of three (3) pond units. The first two units, known as the Primary and Secondary Cells, were designed as two chambered wet ash ponds and placed in service in 1997. After several years of operation, the Primary Cell's settling efficiency was reduced due to ash deposition and a third pond, Pond 2 East (2E) was added to the system in 2010.

There are two impoundments areas at the HPS which have been decommissioned and include: 1) East Ash Pond System Ponds 2 and 4 (EAPS) which are located adjacent to AEAPS and have been out of service since 1995; and, 2) West Ash Pond System Ponds 1 and 3 (WAPS) which are located west of the HPS and have been out of service since 1997. Pond 2E was constructed within the eastern footprint of the decommissioned Pond 2 area of the EAPS. The remaining portion of the Pond 2 area of the EAPS has being permitted as a dry fly ash landfill facility.

Process water and sluiced CCW are currently discharged into the Primary Cell of the AEAPS, where the CCW is allowed to settle and water is discharged into Pond 2E. Solids are further settled in Pond 2E prior to water discharge to the adjoining Secondary Cell (refer to Figure 2). Water flows sequentially through the Primary Cell, Pond 2E, and the Secondary Cell prior to discharge through a 5 foot stoplog weir structure and into the system outlet works. The AEAPS final outlet works include a Parshall flume for flow measurement and a final sampling manhole. Flow is then discharged to the Illinois River through NPDES outfall 003.

For the purposes of this EPA-mandated assessment, the sizes of the impoundments were based on U. S. Army Corps of Engineers (COE) criteria. Based on the maximum crest height of 18 feet and a storage volume of approximately 36 acre-feet, the WAPS is classified as a <u>Small</u> sized structure. Based on the maximum crest height of 52 feet and a storage volume of approximately 1,560 acre-feet, the AEAPS is classified as an <u>Intermediate</u> sized

Dynegy Midwest Generation, LLC –Hennepin Power Station

structure. Because there was no pool area associated with the EAPS, no size classification was estimated for the EAPS.

According to guidelines established by the COE, dams with a storage volume less than 1,000 acre-feet and/or a height less than 40 feet are classified as Small sized structures and dams with a storage volume between 1,000 acre-feet and 50,000 acre-feet and/or a height between 40 feet and 100 feet are classified as Intermediate sized structures.

Under the EPA classification system, as presented on page 2 of the EPA check list (**Appendix C**) and Definitions section (**Appendix B**), it is GZA's opinion that the AEAPS, EAPS and the WAPS would be considered as having a <u>Significant</u> hazard potential. The hazard potential rating is based on no probable loss of human life due to failure and the potential environmental impacts outside of Utility owned property.

Assessments

In general, the overall condition of the EAPS impoundment was judged to be <u>**POOR**</u>. The EAPS impoundment was found to have the following deficiencies:

- 1. Trees were present along the upstream and downstream slopes;
- 2. Minor potholes and rutting along the crest gravel access road; and,
- 3. The stability analysis completed indicates that the 1979 embankments that support the underlying ash along the Illinois River have a calculated factor of safety less than the generally accepted value and assumptions in the analysis about subsurface conditions should be verified.

In general, the overall condition of the AEAPS impoundments was judged to be **<u>POOR</u>**. The AEAPS impoundment was found to have the following deficiencies:

- 1. Minor potholes and rutting along the crest gravel access road;
- 2. Trees were present along the downstream slope of the northern embankment; and,
- 3. The stability analysis completed indicates that the 1979 embankments that support the underlying ash along the Illinois River have a calculated factor of safety less than the generally accepted value.

In general, the overall condition of the WAPS impoundment was judged to be <u>**POOR**</u>. In GZA's professional opinion, the embankment(s) visually appear to be sound and no immediate remedial action appears to be necessary. However, based on EPA's assessment criteria, the impoundment has been given a POOR Condition Rating, because complete hydraulic and geotechnical computations were not provided/available for GZA's for review. Thus, the stability of the embankment(s) could not be independently verified. The WAPS impoundment was found to have the following deficiencies:

- 1. Thick vegetation and trees along the downstream slopes;
- 2. Minor potholes and rutting along the crest gravel access road;

CCW Impoundment Dynegy Midwest Generation, LLC – Hennepin Power Station

- 3. Erosion along the downstream slope of the northern embankment;
- 4. No seepage and/or stability analysis has been performed for the WAPS; and
- 5. No hydraulic/hydrologic analysis has been performed to confirm adequate freeboard and decant capacity at the design storm event.

The following recommendations and remedial measures generally describe the recommended approach to address current deficiencies at the impoundments. Prior to undertaking recommended maintenance, repairs, or remedial measures, the applicability of permits needs to be determined for activities that may occur under the jurisdiction of the appropriate regulatory agencies.

Studies and Analyses

GZA recommends that HPS/Dynegy conduct the following studies and analysis:

- 1. Conduct an analysis of the hydraulic/hydrologic condition of the WAPS to establish the rise in water level that occurs during the 100-year, 24-hour rain event to confirm that adequate freeboard is maintained and adequate decant and spillway capacity is available. The loading conditions established during the design storm event should be used in the evaluation of the seepage and stability evaluation of the embankments.
- 2. Perform a complete structural and seepage stability analysis of the WAPS impoundment including static, seismic and liquefaction loading.
- 3. Generate a remedial design to address the inadequate factor of safety along the northern embankment of the EAPS and AEAPS adjacent to the Illinois River.

Recurrent Operation & Maintenance Recommendations

GZA recommends the following operation and maintenance level activities:

- 1. Increased mowing of the grasses on the embankments to facilitate assessments and reduce the risk of burrowing animals;
- 2. Repair wave action erosion on the downstream slope of the WAPS;
- 3. Repair the potholes present in the gravel crest access roads. Grade the road to provide better drainage and reduce future potholing; and,
- 4. Clear trees and other deep rooted vegetation from the slopes and crests of the embankments.

Repair Recommendations

GZA recommends the following repairs to address observed deficiencies that may affect the stability of the embankments. The recommendations may require design by a professional engineer and construction contractor experienced in impoundment construction.

- 1. Pending the results of the hydraulic/hydrologic analysis, modify the design or operation of the WAPS to provide adequate capacity.
- 2. Pending the results of the complete seepage and stability analysis for the WAPS, modify the design or operation of the impoundments to provide conditions that result in embankments that meet the generally accepted factors of safety.
- 3. Based on the geotechnical results for the EAPS and AEAPS embankments, which produced inadequate minimum factors of safety, develop design modifications for those embankments along the Illinois River. These improvements are to result in the embankments meeting generally accepted factors of safety and protect the slope from future erosion.

<u>Alternatives</u>

There are no practical alternatives to the repairs itemized above.

ACTIVE EAST POND SYSTEM, EAST ASH POND SYSTEM AND WEST ASH POND SYSTEM DYNEGY MIDWEST GENERATION LLC, HENNEPIN POWER STATION HENNEPIN, ILLINOIS

CCW	Impoundment
-----	-------------

Dynegy Midwest Generation, LLC –Hennepin Power	r Station
FIN	AL REPORT

Dates of Assessment: 5/23/11

ACTIVE EAST ASH POND SYSTEM, EAST ASH POND SYSTEM AND WEST ASH POND SYSTEM DYNEGY MIDWEST GENERATION LLC, HENNEPIN POWER STATION HENNEPIN, ILLINOIS

TABLE OF CONTENTS (CONT'D)

2.3	Operation and Maintenance Procedures	
2.4	Emergency Action Plan	
2.5	Hydrologic/Hydraulic Data	
2.6	Structural and Seepage Stability	
3.0	ASSESSMENTS AND RECOMMENDATIONS	
3.1	Assessments	
3.2	Studies and Analyses	
3.3	Recurrent Operation & Maintenance Recommendations	
3.4	Repair Recommendations	
3.5	Alternatives	
4.0	ENGINEER'S CERTIFICATION	

FIGURES

Figure 1	Site Location Map
Figure 2	Overall Ash Basin Plan
Figure 3	East Ash Pond Typical Sections of the 1989 Embankment Raise
Figure 4	East Ash Pond Additional Sections of the 1989 Embankment Raise
Figure 5	Boring Location Plan
Figure 6	AEAPS and EAPS
Figure 7	Pond 2E Profiles and Details
Figure 8	Pond 2E Structure Details
Figure 9	Typical Section of Liner Extension
Figure 10	WAPS

APPENDICES

rts
1

1.0 DESCRIPTION OF PROJECT

1.1 <u>General</u>

1.1.1 Authority

The United States Environmental Protection Agency (EPA), has retained GZA GeoEnvironmental, Inc. (GZA) to perform a visual assessment and develop a report of conditions for the Dynegy Midwest Generation,LLC, (Dynegy, Owner) Hennepin Power Station (HPS, Site) Coal Combustion Waste (CCW) Impoundments in Putnam County, Illinois. This assessment was authorized by the EPA under the authority of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Section 104(e). This assessment and report were performed in accordance with Request for Quote (RFQ) RFQ-DC-16, dated March 16, 2011 and EPA Contract No. EP10W001313, Order No. EP-B11S-00049. The assessment generally conformed to the requirements of the Federal Guidelines for Dam Safety¹, and this report is subject to the limitations contained in **Appendix A** and the Terms and Conditions of our Contract Agreement.

1.1.2 Purpose of Work

The purpose of this investigation was to visually inspect and evaluate the present condition of the impoundments and appurtenant structures (the management unit) to attempt to identify conditions that may adversely affect their structural stability and functionality, to note the extent of any deterioration that may be observed, review the status of maintenance and needed repairs, and to evaluate the conformity with current design and construction standards of care.

The investigation was divided into five parts: 1) obtain and review available reports, investigations, and data from the Owner pertaining to the impoundment and appurtenant structures; 2) perform a review with the Owner of available design, assessment, and maintenance data and procedures for the management unit; 3) perform a visual assessment of the site; 4) prepare and submit a field assessment checklist; and 5) prepare and submit a draft and a final report presenting the evaluation of the structure, including recommendations and proposed remedial actions.

1.1.3 Definitions

To provide the reader with a better understanding of the report, definitions of commonly used terms associated with dams are provided in **Appendix B**. Many of these terms may be included in this report. The terms are presented under common categories associated with dams which include: 1) orientation; 2) dam components; 3) size classification; 4) hazard classification; 5) general; and 6) condition rating.

¹ FEMA/ICODS, April 2004: http://www.ferc.gov/industries/hydropower/safety/guidelines/fema-93.pdf

1.2 <u>Description of Project</u>

1.2.1 Location

The HPS is located in Sections 26 and 27, Township 33 North, Range 2 West, in Putnam County, Illinois at approximately 41°18'11"N, 89°18'55"W. The HPS is adjacent to the Illinois River at river mile 211.5, approximately four (4) miles north of Hennepin, Illinois. The HPS CCW impoundments are located to the east and west of the power plant. A Site locus of the impoundments and surrounding area is shown in **Figure 1**. An aerial photograph of the impoundments and surrounding area is provided as **Figure 2**. The impoundments can be accessed by vehicles from earthen access roads from the HPS.

1.2.2 Owner/Caretaker

The CCW impoundments are owned by Dynegy Midwest Generation, LLC and operated by the HPS.

	Dam Owner/Caretaker
Name	Dynegy Midwest Generation, LLC, Hennepin Power Station
Mailing Address	13498 E 800th St Hennepin, IL 61327
City, State, Zip	Hennepin, Illinois 62327
Contact	Ted Lindenbusch
Title	Managing Director
E-Mail	Ted.Lindenbusch@dynegy.com
Daytime Phone	815-339-9210
Emergency Phone	911

1.2.3 Purpose of the Impoundments

The HPS is a two-unit coal-fired power plant, with a maximum generating capacity of approximately 310 Megawatts. Commercial operation of the facility began in the 1950's. Earthen and fly ash embankment CCW Impoundments (Active East Ash Pond System, East Ash Pond System, and West Ash Pond System) were constructed in conjunction with the HPS facility for the purpose of storing and disposing non-recyclable CCW from the HPS facility and clarification of water prior to discharge.

The current HPS operations use the Active East Ash Pond (AEAPS) for disposal of CCW products. The AEAPS consists of three (3) pond units. The first two units, known as the Primary and Secondary Cells, were designed as two chambered wet ash ponds and placed in service in 1997. After several years of operation, the Primary Cell's settling efficiency was reduced due to ash deposition and a third pond, Pond 2 East (2E) was added to the system in 2010.

There are two impoundments areas at the HPS which have been decommissioned and include: 1) East Ash Pond System Ponds 2 and 4 (EAPS) which are located adjacent to AEAPS

and have been out of service since 1995; and, 2) West Ash Pond System Ponds 1 and 3 (WAPS) which are located west of the HPS and have been out of service since 1997. Pond 2E was constructed within the eastern footprint of the decommissioned Pond 2 area of the EAPS. The remaining portion of the Pond 2 area of the EAPS will be operated as a dry fly ash landfill facility. Impoundments that are not formally closed through the state and can impound water are within the purview of the EPA's assessment criteria.

Process water and sluiced CCW are currently discharged into the Primary Cell of the AEAPS, where the CCW is allowed to settle and water is discharged into Pond 2E. Solids are further settled in Pond 2E prior to water discharge to the adjoining Secondary Cell (refer to Figure 2). Water flows sequentially through the Primary Cell, Pond 2E, and the Secondary Cell prior to discharge through a 5 foot stoplog weir structure and into the system outlet works. The AEAPS final outlet works include a Parshall flume for flow measurement and a final sampling manhole. Flow is then discharged to the Illinois River through outfall 003.

1.2.4 Description of the EAPS Impoundment and Appurtenances

The EAPS was designed by Illinois Power Company. However, available information regarding the original design and/or construction of the EAPS was limited to drawings related to subsequent embankment modifications and references in various documents prepared by Civil & Environmental Consultants, Inc. (CEC) for the design and construction of Pond 2E. The following description of the EAPS is based on the limited available information and observations made by GZA during our Site visit.

Based on the available information, the embankments surrounding the EAPS were constructed in three phases. The original embankments were constructed in 1958, with subsequent modifications in 1978 and 1989. The original embankments were constructed to about elevation 474 feet (MSL) and the north, east and west sides of the EAPS were tied into the bluff on the south side which is also the northern embankment of the Primary and Secondary Cells. In 1978, the embankments were raised to elevation 484 feet (MLS), and to elevation 494 feet (MLS) in 1989. Typical sections of the 1989 embankment extensions are shown on **Figures 3 and 4**.

Borings were performed in 2009 by CEC in the area of the EAPS as part of the design for Pond 2E. Seven of the borings were drilled through the top of the 1989 embankment (at approximate elevation 494 (MLS)) and two borings through the 1978 embankment (at approximate elevation 484 (MLS)). The borings encountered gravelly clays and sands interbedded with layers of loose to medium dense sand, gravel and gravelly sands and clays; stiff to very stiff sandy and silty clays; and loose to very loose, moist to wet, laminated silt with zones of fly ash with a consistency of fine and/or silty sand. There was no evidence that the impoundment embankments were built over wet ash or slag. Several other borings drilled in the EAPS disposal area encountered CCW materials to depths ranging from about 24 to 35 feet below the existing surface grades or elevations ranging about 456 to 453 (MSL), respectively. The boring locations are provided on **Figure 5**.

The original embankment slopes of the EAPS were variable and appear to have been constructed with downstream and upstream slopes that range from approximately 2.5H:1V to about 1.5H:1V. The EAPS crest length is approximately 1 mile with a maximum height (from the lowest downstream toe elevation to the crest of the impoundment) of approximately 52 feet

corresponding to a crest elevation of 494.0 (MSL). The upstream and downstream slopes of the raised embankments sections were constructed at approximately 2.5H:1V.

A dry ash landfill has been constructed on the western portion of the Pond 2 area of the EAPS. The landfill has been constructed with a liner placed on the existing ash fill that was subsequently covered with several feet of ash during construction of Pond 2E. The landfill is permitted to extend to a height of 66 feet above the current embankment corresponding to an elevation of approximately 560 feet (MSL). Please note that the embankments of the EAPS are not regulated as a dam by the Illinois Department of Water Resources.

1.2.5 Description of the AEAPS Primary Cell, Secondary Cell and Appurtenances

The embankments of the Primary Cell and Secondary Cells were designed by Illinois Power Company. The following description of the impoundment is based on information provided in various Illinois Power Company Drawings and Documents, various Design Documents prepared by Civil & Environmental Consultants, Inc. (CEC), other information received from HPS, and observations made by GZA during our Site visit.

The AEAPS Primary and Secondary Cells are located east of the HPS and were originally constructed by reshaping an area that was an existing gravel pit to form the current surface impoundment. The ground elevation surrounding most of gravel pit at the time of construction was described to be equal to or greater than the maximum elevation proposed for the impoundments. The northeast corner of the impoundment however required the construction of an embankment with a portion of it being approximately 20 feet above the existing ground level. This area was described as having uneven natural terrain and was stabilized by leveling the existing ground surface and adding fill to the leveled elevation. The natural slopes in this area gave the northeast corner a height of about 32 feet.

The AEAPS Primary and Secondary Cells function as sedimentation basins for coal combustion wastes (CCW) including bottom ash, fly ash, miscellaneous station low volume waste, and coal pile runoff streams which are piped from the plant and discharged into the impoundment. Fly ash is conditioned and transported dry to the primary cell. The CCW enters the Primary Cell through two 12 inch diameter HDPE pipes and two 10 inch diameter steel pipes which are located near the northeast corner of the Primary Cell. Miscellaneous station low volume waste streams and coal pile runoff also enter the Primary Cell to the west of the northeast corner. The CCW settles in the Primary Cell and flow through the pond is discharged into Pond 2E through an 18 inch diameter reinforced concrete pipe (RCP) outlet structure which is located near the northeast corner of the Primary Cell.

The Secondary Cell receives flow from Pond 2E through a 24 inch diameter RCP which is located near the northwest corner of the Secondary Cell. Flow from the Secondary Cell is discharged through a five foot stop log weir structure into a 36 inch diameter RCP which conveys the flows into the final outlet works and into the Illinois River through outfall structure 003. The locations of the discharge pipes and structures are shown in **Figure 6**. Details of the discharge pipes and structures are shown on **Figures 7 and 8**. Prior to the construction of Pond 2E, flow through the Primary Cell was discharged into the Secondary Cell through a five-foot stoplog decant structure. The decant structure was abandoned as part of the construction of Pond 2E.

The AEAPS Primary and Secondary Cells consist of sand and gravel earthen embankments with a crest length of approximately 0.6 miles and 0.4 miles, respectively and a maximum height (from the lowest downstream toe elevation to the crest of the impoundment) of approximately 32 feet corresponding to a crest elevation of 494.0 Mean Sea Level (MSL). The bottom of the impoundments is at approximately Elevation 458.0 (MSL). The embankments of the cells were constructed in 1995 and 1996 and placed in service in 1997 with 4-foot horizontal to one-foot vertical (4H:1V) upstream and downstream slopes consisting of native sand and gravel materials. There was no evidence that the impoundment embankments were built over wet ash or slag. A 4-foot thick clay liner was constructed on the bottom of the cells and up the upstream side slopes of the cells to a height of approximately 20 feet above the base of the impoundments. The upper 12 feet of the upstream slopes were not lined at the time of the initial construction. After construction, operating water levels in the cells were maintained at or below the top elevation of the clay liner. Over the next several years, CCW filled the Primary Cell to levels that required that the upstream liner be raised to provide full depth operating levels for CCW transport, clarification and deposition. The liner in both cells was raised in 2003 by extending the existing liner up the upstream slopes from the original 20 foot level an additional 12 feet to the top of the crest. The construction of the extended liner consisted of 45-mil HDPE geomembrane over a 12-inch layer of compacted clay. A typical section for the liner extension is shown in Figure 9.

The intermediate embankment between the AEAPS Primary and Secondary Cells is regulated by the Illinois Department of Transportation, Division of Water Resources (IDOT/DWR) as a small-size, Class III dam under permit no. 21922, issued November 10, 1994. According to guidelines established by the DWR, dams with a storage volume less than 1,000 acre-feet and/or a height less than 40 feet are classified as Small sized structures. *Class III* structures are those for which failure has a low probability of causing loss of life or substantial environmental damage.

Instrumentation near the AEAPS Primary and Secondary Cells include six groundwater monitoring wells, numbered 12 through 16, which are located as shown on **Figure 6**.

1.2.6 Description of the AEAPS Pond 2E and Appurtenances

Pond 2E was constructed within the footprint of the eastern portion of Pond 2 of the EAPS and follows the same history as the EAPS, as discussed in Section 1.2.4, until 2009. Construction of Pond 2E began in 2009 and was completed in 2010. CCW flows are discharged directly from the Primary Cell into Pond 2E along with surface water runoff from EAPS Pond 2. Flow is routed from the Primary Cell through Pond 2E and into the Secondary Pond before discharging to the Illinois River through the system outlet works. According to HPS personnel, Pond 2E was designed to increase the efficiency of the existing pond system by adding additional storage and settling capacity. The associated design plans and calculations for a dry ash landfill which would be located on the EAPS west of Pond 2E have been submitted to IEPA Bureau of Land Management. It should be noted that a landfill permit approval is not required. Once the dry ash landfill has been constructed, Pond 2E will provide sediment control, storm flow storage, and leachate detention.

Pond 2E is located on the eastern portion of the decommissioned EAPS Pond 2 and was constructed by excavating and removing a portion of the ash fill. Flow is routed from the AEAPS Primary Cell to Pond 2E through an 18 inch diameter reinforced concrete pressure pipe

(RCPP) discharge culvert which was installed during the construction of Pond 2E. Operational flows exit Pond 2E through the principal spillway, a 2-foot wide by 1-foot tall orifice, of Pond 2E's concrete outlet structure. The concrete outlet structure includes an auxiliary spillway which is a 3-foot wide by 1-foot tall weir, and an emergency spillway which is a 6-foot by 4-foot drop inlet. The principal and auxiliary spillways were designed to pass the 100-year frequency storm without the emergency spillway functioning. Flows through all three spillways are discharged through a 24-inch diameter RCP into the Secondary Cell.

Pond 2E's earth embankment structure is approximately 11 feet to 52 feet high and 1300 feet long. It has a crest elevation of approximately 494 feet (MLS) and an upstream face with a 3H:1V (horizontal: vertical) slope. A 60-mil smooth HDPE geomembrane was installed on the bottom and upstream slopes of Pond 2E. The liner also caps the underlying ash along the eastern portion of the former ash impoundment. A concrete culvert and headwalls were installed on the southwest side of Pond 2E to allow inflow from the Primary Cell. A gate valve was installed on the Primary Cell headwall to provide flow control, if required, for repairs. A plan view and typical sections of the Pond 2E embankments and other details are provided on **Figures 7 and 8**.

Instrumentation near the AEAPS Pond 2E includes groundwater monitoring wells, numbered 12 through 16, which are located as shown on **Figure 6**.

1.2.7 Description of the WAPS Impoundment and Appurtenances

The WAPS is located to the west of the HPS and based on available records was designed by Illinois Power Company. The following description of the impoundment is based on information provided on various Illinois Power Company drawings, information received from Dynegy and observations made by GZA during our site visit. Information for the original design and construction of the WAPS was limited to drawings which were prepared for the 1989 raise of the original impoundment embankments.

The original WAPS was constructed in 1950's and designated as Ponds 1 and 3. The ponds appear to have been constructed as unlined earthen embankments which consist of sand and gravel materials. The north embankment of WAPS abuts the south bank of the Illinois River. The general height of the original embankments (from the lowest downstream toe elevation to the top of the impoundment) was about 10 feet, corresponding to a crest elevation of 460.0 (MSL). The WAPS embankments were raised in 1989 by adding an average of 5 feet of new fill to the existing embankments, increasing the crest elevation to 465.0 (MSL). There was no evidence that the impoundment embankments were built over wet ash or slag. The perimeter of the WAPS was also extended at that time to enclose Ponds 1 and 3 into a single pond. The crest length of the combined ponds is about 1.2 miles. The WAPS was decommissioned in 1995 and was not receiving or discharging flows at the time of GZA's site visit. The WAPS is not regulated as a dam by the IDNR.

Instrumentation near the WAPS includes groundwater monitoring wells numbered as follows; 21 through 27, 31 through 36 and, L1 and L4, which are located as shown on **Figure 10**. The wells are monitored quarterly and as a condition of the 1996 IEPA approved Closure Work Plan (CWP) for the WAPS.

1.2.8 Operations and Maintenance

The impoundments are operated and maintained by HPS personnel. Operation of the Primary Cell, Secondary Cell and Pond 2E includes periodic adjustment of the decant elevations and includes monitoring of groundwater and repair of the gravel access roads as needed.

Discharges of the HPS facility are regulated by the EPA under the National Pollutant Discharge Elimination System (NPDES) Permit No. IL0001554. A portion of outer embankments of Primary and Secondary Cell of the AEAPS are considered to be a dam that is regulated by the Illinois Department of Natural Resources, Office of Water Resources under permit number DS2004119. As part of the dam permit, there is an Operation and Maintenance Plan that was developed for the Primary and Secondary Cells. That plan includes regular mowing, vegetation management, semi-annual assessments, and assessments by a register professional engineer every 5 years.

An operation and maintenance plan was developed by CEC for Pond 2E. The plan included information about the frequency and scope of periodic assessments. The plan requires assessment of the impoundment on a quarterly basis by HPS staff and every 5 years by a registered professional engineer. The plan also requires maintenance of an emergency drawdown pump at the facility.

1.2.9 Size Classification

For the purposes of this EPA-mandated assessment, the sizes of the impoundments were based on U. S. Army Corps of Engineers (COE) criteria. Based on the maximum crest height of 18 feet and a storage volume of approximately 36 acre-feet, the WAPS is classified as a <u>Small</u> sized structure. Based on the maximum crest height of 52 feet and a storage volume of approximately 1,560 acre-feet, the AEAPS is classified as an <u>Intermediate</u> sized structure. Because there was no pool area associated with the EAPS, no size classification was estimated for the EAPS.

According to guidelines established by the COE, dams with a storage volume less than 1,000 acre-feet and/or a height less than 40 feet are classified as Small sized structures and dams with a storage volume between 1,000 acre-feet and 50,000 acre-feet and/or a height between 40 feet and 100 feet are classified as Intermediate sized structures.

1.2.10 Hazard Potential Classification

Under the EPA classification system, as presented on page 2 of the EPA check list (**Appendix C**) and Definitions section (**Appendix B**), it is GZA's opinion that the AEAPS, EAPS and the WAPS would be considered as having a <u>Significant</u> hazard potential. The hazard potential rating is based on no probable loss of human life due to failure and the potential environmental impacts outside of Utility owned property. The hazard rating for the AEAPS differs from the hazard rating given to the Primary and Secondary Cells by the IDNR due to the inclusion of Pond 2E in the AEAPS since IDNR rating.

1.3 Pertinent Engineering Data

1.3.1 Drainage Area

The existing impoundments are surrounded by exterior dikes with crest elevations that are above the surrounding geographical features. This confines the rainfall sub-basin areas to the impoundment areas themselves resulting in no additional overland flow being introduced to the system.

1.3.2 Reservoir

Based on estimates made by GZA², the WAPS has a surface area of 2 acres and a storage volume of approximately 36 acre feet at a pool elevation of 455.6 feet MSL. The AEAPS has a surface area of approximately 30 acres and a storage volume of approximately 1,560 acre feet at a pool elevation of 489.5 feet MSL. The EAPS no longer actively impounds water and therefore a reservoir volume was not calculated. The pool areas observed on GZA's May 23, 2011 Site visit are consistent with the surfaces areas noted above.

1.3.3 Discharges at the Impoundment Sites

According to HPS personnel, under normal operating conditions, approximately 2.4 million gallons of water per day (MGD) are discharged from the Secondary Cell to the Illinois River.

1.3.4 General Elevations (feet – MSL)

Elevations were taken from design drawings, reports, and data provided by HPS. Elevations were based upon the USGS topographic map MSL vertical datum.

AEAPS Impoundment

<u>Primary Cell</u>	
A. Top of Embankment (Minimum)	± 494 feet
B. Upstream Water at Time of Assessment	\pm 489.5 feet
C. Downstream Tail Water at Time of Assessment	485.2 feet (Pond 2E)
D. Maximum Pond Water Elevation	489.5 feet
<u>Secondary Cell</u>	
A. Top of Embankment (Minimum)	± 494 feet

- et B. Upstream Water at Time of Assessment 479.5 feet C. Downstream Tail Water at Time of Assessment 448 feet (Illinois River) 480.5 feet
- D. Maximum Pond Water Elevation

CCW Impoundment Dynegy Midwest Generation, LLC –Hennepin Power Station

8

² Surface area estimates generated using Google Earth Professional software and available aerial photographs.

<u>Pond 2E</u>	
A. Top of Embankment (Minimum)	±494 feet
B. Upstream Water at Time of Assessment	485.2 feet
C. Downstream Tail Water at Time of Assessment	479.5 feet (Secondary Cell)
D. Maximum Pond Water Elevation	480 feet
EAPS Impoundment	
A. Top of Embankment (Minimum)	494 feet
B. Upstream Water at Time of Assessment	N/A
C. Downstream Tail Water at Time of Assessment	442 feet
D. Maximum Pond Water Elevation	Unknown
WAPS Impoundment	
A. Top of Embankment (Minimum)	465.0 feet
B. Upstream Water at Time of Assessment	455.6 feet
C. Downstream Tail Water at Time of Assessment ³	± 448 feet
D. Maximum Pond Water Elevation	Unknown

1.3.5 Design and Construction Records and History

The EAPS and WAPS were designed by Illinois Power Company. However, available information regarding the original design and/or construction of the EAPS was limited to drawings related to subsequent embankment modifications and references in various documents prepared by CEC for the design and construction of Pond 2E. The documentation included information about the dimensions of the slopes and the materials used but not about the construction techniques or quality control during construction.

Construction of Pond 2E was documented in a December 2010 report generated by CEC. The report included documentation of the excavation of Pond 2E into the existing ash and construction of the liner on the upstream slopes. The construction did not include modification of the embankments of the existing pond.

1.3.6 Operating Records

No operating records of the impoundments were provided to GZA.

1.3.7 Previous Assessment Reports

The HPS personnel perform visual assessments of the impoundments on a weekly basis and the assessment results are documented in a field log book. Every 5 years the Primary and Secondary Cells are inspected by a consulting engineer. GZA was provided with the 5-year assessments reports from 2001, 2006, and 2010 in Appendix D. The assessment completed March 29, 2010 was conducted by Mr. Kenneth M. Berry, P.E. of URS and indicated no deficiencies for the Primary and Secondary Cells at that time. Observed deficiencies at the WAPS include thick vegetation and trees.

³ Downstream tail water elevation based on visual estimates made by GZA during the Site Visit.

2.0 ASSESSMENT

2.1 <u>Visual Assessment</u>

The HSP impoundments were inspected on May 23, 2011 by Patrick J. Harrison, P.E., and Douglas P. Simon, P.E. (Wisconsin), of GZA GeoEnvironmental, Inc., and accompanied by Phil Morris of Dynegy. The weather was partly cloudy with temperatures in the 70° s to 80° s Fahrenheit. Photographs to document the current conditions of the impoundments were taken during the assessment and are included in **Appendix E**. The water levels in the impoundments at the time of the assessment were as provided in Section 1.3.4. Underwater areas were not inspected, as this level of investigation was beyond of GZA's scope of services. Copies of the EPA Checklists are included in **Appendix C**.

With respect to our visual assessment, there was no evidence of prior releases, failures, or repairs observed by GZA for most of the impoundment areas. It appeared that the downstream slope of the northwestern embankment of the WAPS had been regraded within the last year.

2.1.1 EAPS Impoundment General Findings

In general, the HPS EAPS Impoundment was found to be in <u>POOR</u> condition. An overall Site plan showing the impoundments is provided as **Figure 2**. The location and orientation of photographs provided in **Appendix E** is shown on the Photo Plan in **Figure 6**.

2.1.2 EAPS Upstream Slope (Photos 18, 22, 24, and 74)

The northern portion of the EAPS has been permitted for a dry ash landfill and the upstream slopes are covered with ash along that portion of the impoundment. The southern portion of the EAPS that includes the former Pond 4 is no longer active. The upstream embankments along that portion of the EAPS were generally vegetated with grass that had not been recently mowed. Trees up to 12 inches in diameter were present on the slope.

2.1.3 EAPS Crest of Impoundment (Photos 32 though 35, 45, 52, 71 through 73)

The crest of the EAPS Impoundment generally had a gravel access road along the northern portion of the impoundment. The crest of impoundment had occasional pot holes along its entire length. The alignment of the crest appeared generally level, with no large depressions or irregularities observed. Based on information provided by HPS personnel, the crest elevation is approximately elevation 494 feet MSL. No significant settlement was observed at the time of our assessment. There was no water present in the EAPS at the time of our assessment.

2.1.4 EAPS Downstream Slope (Photos 25 through 28, 55 through 57, 69, and 70)

The downstream slope of the impoundment was generally covered in thick grass vegetation making it difficult to observe during our assessments. In addition, the rough terrain and steep slopes along the northern portion of the impoundment created a personnel safety risk to access the slope. Therefore, our observations along that portion of the impoundment were limited to that which could be observed from the crest of the 1979 embankment. Trees up to 24 inches in diameter generally characterized northern embankment along the Illinois River. No grass was present along that portion of the embankment. The western and southwestern

embankment was generally covered with grass that had not been recently mowed. No unusual movement or displacement was observed on the slope.

2.1.5 EAPS Discharge Pipes (Photo 44)

The EAPS no longer functions as an active ash impoundment and no CCW sluice piping is present. Storm water drains have been installed along portions of the perimeter of the permitted landfill as shown in Photo 44. The drains appeared to be in good condition at the time of our assessment.

2.1.6 AEAPS Impoundment General Findings

In general, the HPS AEAPS Impoundment was found to be in <u>POOR</u> condition. An overall Site plan showing the impoundments is provided as **Figure 2**. The location and orientation of photographs provided in **Appendix E** is shown on the Photo Plan in **Figure 6**.

2.1.7 AEAPS Upstream Slope (Photos 35 through 43, 45 through 53)

The water surface elevation at the time of assessment was approximately at elevation 489.5 feet, 489.0 feet, and 479.5 feet MSL in the Primary Cell, Pond 2E and Secondary Cell, respectively. Therefore, the lower portion of the upstream slope was below the water level and not visible. Where visible, the upstream slope of Pond 2E was covered with a HDPE liner that was in good condition. The upstream slopes of the Primary and Secondary Cells were generally covered with grass above the water level.

2.1.8 AEAPS Crest of Impoundment (Photos 35 through 43, 45 through 53)

The crest of the AEAPS Impoundment was generally covered by a gravel access road. The crest of impoundment had occasional pot holes along its entire length. The alignment of the crest appeared generally level, with no large depressions or irregularities observed. Based on information provided by HPS personnel, the crest elevation is approximately elevation 494 feet MSL. No significant settlement was observed at the time of our assessment. There was approximately 4 feet to 14 feet of free board at the time of our assessment.

2.1.9 AEAPS Downstream Slope (Photos 29 through 31)

The AEAPS Impoundment shares a common embankment with the EAPS along the western portion of the impoundment and is incised along the southern portion. Therefore, no downstream slope was visible or present along those portions of the impoundment. The northern embankment of the impoundment abuts the Illinois River and is characterized by trees up to 24-inches in diameter. The eastern embankment was covered with grass that had not been recently mowed.

2.1.10 AEAPS Discharge Structures (Photos 58 through 68)

GZA observed the outlet structures that transmit flow from the Primary Cell to Pond 2E and then to the Secondary Cell. Based on our observations, the structures appeared to be in good condition with no defects noted. GZA also observed the condition of the decant structure

in the Secondary Cell and the partial flume. Both structures appeared to be in good condition based on our observations.

2.1.11 WAPS Impoundment General Findings

In general, the HPS WAPS Impoundment was found to be in <u>POOR</u> condition. An overall Site plan showing the impoundments is provided as **Figure 2**. The location and orientation of photographs provided in **Appendix E** is shown on the Photo Plan in **Figure 10**.

2.1.12 WAPS Upstream Slope (Photos 18, 22, and 24)

The eastern portion of the WAPS has been filled with ash and the upstream slopes along that portion were not visible. The water surface elevation at the time of assessment was approximately at elevation 455.6 feet MSL along the western portion of the impoundment. Therefore, the lower portion of the upstream slope was below the water level and not visible. Where visible, the upstream slope was generally vegetated with grass that had not been recently mowed. Trees and shrubs up to 4 inches in diameter were noted along several portions of the upstream slope.

2.1.13 WAPS Crest of Impoundment (Photos 14 through 20)

The crest of the WAPS Impoundment was generally covered by a gravel access road. The crest of impoundment had occasional pot holes along its entire length. The alignment of the crest appeared generally level, with no large depressions or irregularities observed. Based on information provided by HPS personnel, the crest elevation is approximately elevation 460 feet MSL. No significant settlement was observed at the time of our assessment. There was approximately 8 feet of free board at the time of our assessment.

2.1.14 WAPS Downstream Slope (Photos 1 through 13)

The downstream slope of the impoundment was generally wooded along the northern portion of the impoundment adjacent to the Illinois River. Trees up to 24-inches in diameter were present along the downstream slope of the northern embankment. The remaining embankments were generally covered with grass that had not been recently mowed. Trees up to 12 inches in diameter were noted along the southern embankment and smaller trees and shrubs were noted along the eastern embankment. There was erosion (likely due to wave action) of the downstream slope of the northern embankment.

2.1.15 WAPS Discharge Pipes (Photos 21 and 22)

The decant structure for the WAPS Impoundment consists of a 12-inch diameter steel pipe with a trash rack as shown in Photo 21. The pipe discharges into the Illinois River and the discharge pipe is shown in Photo 22. The decant and discharge portions of the pipe appeared to be in good condition at the time of our assessment.

2.2 <u>Caretaker Interview</u>

Maintenance of the impoundments is the responsibility of HPS personnel. GZA met with HPS personnel and discussed the operations and maintenance procedures, regulatory requirements,

and the history of the impoundments since their construction. Information gathered during that discussion is reflected in this report.

2.3 Operation and Maintenance Procedures

As discussed in Section 1.2.7, HPS personnel are responsible for the regular operations and maintenance of the impoundments. No formal maintenance plan has been developed for the WAPS and EAPS impoundments. An operation and maintenance plan for the Primary and Secondary Cells has been developed along with a separate operation and maintenance plan for Pond 2E. Based on our discussions with HPS personnel, the roadways and slopes are repaired as needed.

2.4 <u>Emergency Action Plan</u>

An Emergency Action Plan (EAP) has not been developed for the impoundments. An emergency action plan is not required for Class III structure per Illinois regulations. Note that the hazard potential classification for the dam is discussed in Section 1.2.11.

2.5 <u>Hydrologic/Hydraulic Data</u>

Illinois Power Company performed a hydrologic/hydraulic analysis in 1994 for the AEAP Primary and Secondary Cells as part of the original impoundment design. The results are provided in the "Hennepin Power Station Ash Surface Impoundment, Hydrologic/Hydraulic Analysis" report. The analysis was used to determine the maximum discharge rates and water elevations the facility would obtain and also to size the discharge piping and determine the required freeboard.

A hydrologic/hydraulic analysis was also conducted in 2009 by CEC for the AEAP Primary and Secondary Cells and for Pond 2E. The results are provided in the "Engineering Basis of Design, Application for a Permit to Construct a New Leachate and Storm Water Runoff Collection Pond, Dynegy – Hennepin Power Station, Hennepin, Illinois" report. In addition to the HPS operating flows and the future effects from the new landfill portion of the EAPS, the ponds were determined by CEC to have sufficient capacity to safely pass the 24-hour 25-year and the 24-hour 100-year frequency rainfall events with a minimum free-broad of more than 2 feet,

Based on the available information, a hydrologic/hydraulic analysis has not been performed for the WAPS.

GZA did not perform an independent assessment of the hydraulics and hydrology for the impoundments as this was beyond our scope of services.

2.6 <u>Structural and Seepage Stability</u>

Illinois Power Company performed a stability and seepage analysis for the AEAP Primary and Secondary Cells as part of the original impoundment design. The results are provided in the "Hennepin Power Station Ash Surface Impoundment, Geotechnical/Structural Design" report. Based on the results of the stability analysis, the factor of safety was calculated for several load conditions. The critical load conditions were determined to be the end of construction and rapid drawdown conditions. Both static and seismic conditions were evaluated. The results indicted

minimum static and seismic factors of safety of 2.0 and 1.7, respectively for the upstream embankments and 2.3 and 2.0, respectively for the downstream embankments. The results for the original embankments were within the range of acceptable factors of safety for the types of embankments and load conditions evaluated.

CEC performed a stability analysis for a section of the existing EAPS 1979 embankment as part of the new landfill design. The 1979 embankment is common to the AEAP and the EAP; the ponds were separated into different units in association with the construction of Pond 2E at a later date. Since the embankment is common to both impoundments, we would expect the CEC analyses for the 1979 embankment for the EAP are to be applicable to the 1979 embankment for the AEAP. Based on the results provided, the calculated factor of safety against wedge failure of the 1978 embankment without seismic loading was 1.009. After submittal of the draft report, Dynegy provided additional analysis and discussion for the 1978 embankment. The additional analysis indicated a factor of safety of 1.4 for static loading conditions. This result is less than generally acceptable factors of safety of 1.5 for the types of embankments and load conditions evaluated, in GZA's opinion. In addition, it is our opinion that the assumption of the discontinuity of the stream bed deposits in the analysis should be verified.

No engineering evaluation is available for the WAPS embankments which were designed by Illinois Power Company.

GZA did not perform an independent assessment of the hydraulics and hydrology for the impoundments as this was beyond our scope of services.

3.0 ASSESSMENTS AND RECOMMENDATIONS

3.1 Assessments

In general, the overall condition of the EAPS impoundment was judged to be **<u>POOR</u>**. The EAPS impoundment was found to have the following deficiencies:

- 1. Trees were present along the upstream and downstream slopes;
- 2. Minor potholes and rutting along the crest gravel access road; and,
- 3. The stability analysis completed indicates that the 1979 embankments that support the underlying ash along the Illinois River have a calculated factor of safety less than the generally accepted value and assumptions in the analysis about subsurface conditions should be verified.

In general, the overall condition of the AEAPS impoundments was judged to be **POOR**. The AEAPS impoundment was found to have the following deficiencies:

- 1. Minor potholes and rutting along the crest gravel access road;
- 2. Trees were present along the downstream slope of the northern embankment; and,

3. The stability analysis completed indicates that the 1979 embankments that support the underlying ash along the Illinois River have a calculated factor of safety less than the generally accepted value.

In general, the overall condition of the WAPS impoundment was judged to be **POOR**. In GZA's professional opinion, the embankment(s) visually appear to be sound and no immediate remedial action appears to be necessary. However, based on EPA's assessment criteria, the impoundment has been given a POOR Condition Rating, because complete hydraulic and geotechnical computations were not provided/available for GZA's for review. Thus, the stability of the embankment(s) could not be independently verified. The WAPS impoundment was found to have the following deficiencies:

- 1. Thick vegetation and trees along the downstream slopes;
- 2. Minor potholes and rutting along the crest gravel access road;
- 3. Erosion along the downstream slope of the northern embankment;
- 4. No seepage and/or stability analysis has been performed for the WAPS; and
- 5. No hydraulic/hydrologic analysis has been performed to confirm adequate freeboard and decant capacity at the design storm event.

The following recommendations and remedial measures generally describe the recommended approach to address current deficiencies at the impoundments. Prior to undertaking recommended maintenance, repairs, or remedial measures, the applicability of permits needs to be determined for activities that may occur under the jurisdiction of the appropriate regulatory agencies.

3.2 <u>Studies and Analyses</u>

GZA recommends that HPS/Dynegy conduct the following studies and analysis:

- 1. Conduct an analysis of the hydraulic/hydrologic condition of the WAPS to establish the rise in water level that occurs during the 100-year, 24-hour rain event to confirm that adequate freeboard is maintained and adequate decant and spillway capacity is available. The loading conditions established during the design storm event should be used in the evaluation of the seepage and stability evaluation of the embankments.
- 2. Perform a complete structural and seepage stability analysis of the WAPS impoundment including static, seismic and liquefaction loading.
- 3. Generate a remedial design to address the inadequate factor of safety along the northern embankment of the EAPS and AEAPS adjacent to the Illinois River.
- 3.3 <u>Recurrent Operation & Maintenance Recommendations</u>

GZA recommends the following operation and maintenance level activities:

1. Increased mowing of the grasses on the embankments to facilitate assessments and reduce the risk of burrowing animals;

CCW Impoundment

Dynegy Midwest Generation, LLC –Hennepin Power Station

- 2. Repair wave action erosion on the downstream slope of the WAPS;
- 3. Repair the potholes present in the gravel crest access roads. Grade the road to provide better drainage and reduce future potholing; and,
- 4. Clear trees and other deep rooted vegetation from the slopes and crests of the embankments.
- 3.4 <u>Repair Recommendations</u>

GZA recommends the following repairs to address observed deficiencies that may affect the stability of the embankments. The recommendations may require design by a professional engineer and construction contractor experienced in impoundment construction.

- 1. Pending the results of the hydraulic/hydrologic analysis, modify the design or operation of the WAPS to provide adequate capacity.
- 2. Pending the results of the complete seepage and stability analysis for the WAPS, modify the design or operation of the impoundments to provide conditions that result in embankments that meet the generally accepted factors of safety.
- 3. Based on the geotechnical results for the EAPS and AEAPS embankments, which produced inadequate minimum factors of safety, develop design modifications for those embankments along the Illinois River. These improvements are to result in the embankments meeting generally accepted factors of safety and protect the slope from future erosion.
- 3.5 <u>Alternatives</u>

There are no practical alternatives to the repairs itemized above.

4.0 ENGINEER'S CERTIFICATION

I acknowledge that the management unit referenced herein, the HPS WAPS, AEAPS, and EAPS Impoundments have been assessed to be in **POOR** condition on May 23, 2011.

tran

Patrick J. Harrison, P.E. Senior Consultant

FIGURES

a. nt onme nvir

nvir GZA

DJ MGR: DPS SIGNED BY: DPS TIEWED BY: PJH	ΞŸΞĘ
DES DES DES	
DESCRIPT Reduced and IS no Longer to A scale	
REV. NO.	
DYNEGY MIDWEST GENERATION, INC. HENNEPIN POWER STATION HENNEPIN, ILLINOIS BORING LOCATION PLAN	
JOB NO. 01.0170142.: FIGURE NO.	30

a n

n

a

GZA

2011

0

APPENDIX A

LIMITATIONS

DAM ENGINEERING & VISUAL ASSESSMENT LIMITATIONS

- 1. The observations described in this report were made under the conditions stated herein. The conclusions presented in the report were based solely on the services described therein, and not on scientific tasks or procedures beyond the scope of described services or the time and budgetary constraints imposed by the United States Environmental Protection Agency (EPA).
- 2. In preparing this report, GZA GeoEnvironmental, Inc. (GZA) has relied on certain information provided by Dynegy Midwest Generation, LLC (Dynegy) (and their affiliates) as well as Federal, state, and local officials and other parties referenced therein. GZA has also relied on other parties which were available to GZA at the time of the assessment. Although there may have been some degree of overlap in the information provided by these various sources, GZA did not attempt to independently verify the accuracy or completeness of all information reviewed or received during the course of this work.
- 3. In reviewing this Report, it should be noted that the reported condition of the Ash Ponds is based on observations of field conditions during the course of this study along with data made available to GZA. The observations of conditions at the Ash Ponds reflect only the situation present at the specific moment in time the observations were made, under the specific conditions present. It may be necessary to reevaluate the recommendations of this report when subsequent phases of evaluation or repair and improvement provide more data.
- 4. It is important to note that the condition of a dam or embankment depends on numerous and constantly changing internal and external conditions, and is evolutionary in nature. It would be incorrect to assume that the present condition of the dam or embankment will continue to represent the condition of the dam or embankment at some point in the future. Only through continued care and inspection can there be any chance that unsafe conditions may be detected.
- 5. Water level readings have been reviewed and interpretations have been made in the text of this report. Fluctuations in the level of the groundwater and surface water may occur due to variations in rainfall, temperature, and other factors different than at the time measurements were made.
- 6. GZA's comments on the history, hydrology, hydraulics, and embankment stability for the Ash Ponds are based on a limited review of available design documentation for the Hennepin Power Station. Calculations and computer modeling used in these analyses were not available and were not independently reviewed by GZA.
- 7. This report has been prepared for the exclusive use of EPA for specific application to the existing dam facilities, in accordance with generally accepted dam engineering practices. No other warranty, express or implied, is made.
- 8. This dam inspection verification report has been prepared for this project by GZA. This report is for broad evaluation and management purposes only and is not sufficient, in and of itself, to prepare construction documents or an accurate bid.
- 9. The Phase I investigation does not include an assessment of the need for fences, gates, no-trespassing signs, repairs to existing fences and railings and other items which may be needed to minimize trespass and provide greater security for the facility and safety to the public. An evaluation of the project for compliance with OSHA rules and regulations is also excluded.

APPENDIX B

DEFINITIONS

COMMON DAM SAFETY DEFINITIONS

For a comprehensive list of dam engineering terminology and definitions refer to references published by the U.S. Army Corps of Engineers, the Federal Energy Regulatory Commission, the Department of the Interior Bureau of Reclamation, or the Federal Emergency Management Agency.

Orientation

Upstream - Shall mean the side of the dam that borders the impoundment.

Downstream - Shall mean the high side of the dam, the side opposite the upstream side.

<u>Right</u> – Shall mean the area to the right when looking in the downstream direction.

Left – Shall mean the area to the left when looking in the downstream direction.

Dam Components

Dam – Shall mean any artificial barrier, including appurtenant works, which impounds or diverts water.

<u>Embankment</u> – Shall mean the fill material, usually earth or rock, placed with sloping sides, such that it forms a permanent barrier that impounds water.

<u>Crest</u> – Shall mean the top of the dam, usually provides a road or path across the dam.

<u>Abutment</u> – Shall mean that part of a valley side against which a dam is constructed. An artificial abutment is sometimes constructed as a concrete gravity section, to take the thrust of an arch dam where there is no suitable natural abutment.

<u>Appurtenant Works</u> – Shall mean structures, either in dams or separate there from, including but not be limited to, spillways; reservoirs and their rims; low level outlet works; and water conduits including tunnels, pipelines, or penstocks, either through the dams or their abutments.

<u>Spillway</u> – Shall mean a structure over or through which water flows are discharged. If the flow is controlled by gates or boards, it is a controlled spillway; if the fixed elevation of the spillway crest controls the level of the impoundment, it is an uncontrolled spillway.

General

<u>EAP – Emergency Action Plan</u> - Shall mean a predetermined plan of action to be taken to reduce the potential for property damage and/or loss of life in an area affected by an impending dam break.

<u>O&M Manual</u> – Operations and Maintenance Manual; Document identifying routine maintenance and operational procedures under normal and storm conditions.

<u>Normal Pool</u> – Shall mean the elevation of the impoundment during normal operating conditions.

 $\underline{\text{Acre-foot}}$ – Shall mean a unit of volumetric measure that would cover one acre to a depth of one foot. It is equal to 43,560 cubic feet. One million U.S. gallons = 3.068 acre feet.

<u>Height of Dam</u> – Shall mean the vertical distance from the lowest portion of the natural ground, including any stream channel, along the downstream toe of the dam to the crest of the dam.

<u>Spillway Design Flood (SDF)</u> – Shall mean the flood used in the design of a dam and its appurtenant works particularly for sizing the spillway and outlet works, and for determining maximum temporary storage and height of dam requirements.

Condition Rating

SATISFACTORY - No existing or potential management unit safety deficiencies are recognized. Acceptable performance is expected under all applicable loading conditions (static, hydrologic, seismic) in accordance with the applicable criteria. Minor maintenance items may be required.

FAIR - Acceptable performance is expected under all required loading conditions (static, hydrologic, seismic) in accordance with the applicable safety regulatory criteria. Minor deficiencies may exist that require remedial action and/or secondary studies or investigations.

POOR - A management unit safety deficiency is recognized for any required loading condition (static, hydrologic, seismic) in accordance with the applicable dam safety regulatory criteria. Remedial action is necessary. POOR also applies when further critical studies or investigations are needed to identify any potential dam safety deficiencies.

UNSATISFACTORY - Considered unsafe. A dam safety deficiency is recognized that requires immediate or emergency remedial action for problem resolution. Reservoir restrictions may be necessary.

Hazard Potential

(In the event the impoundment should fail, the following would occur):

LESS THAN LOW HAZARD POTENTIAL: Failure or misoperation of the dam results in no probable loss of human life or economic or environmental losses.

LOW HAZARD POTENTIAL: Dams assigned the low hazard potential classification are those where failure or misoperation results in no probable loss of human life and low economic and/or environmental losses. Losses are principally limited to the owner's property.

SIGNIFICANT HAZARD POTENTIAL: Dams assigned the significant hazard potential classification are those dams where failure or misoperation results in no probable loss of human life but can cause economic loss, environmental damage, disruption of lifeline facilities, or can impact other concerns. Significant hazard potential classification dams are often located in predominantly rural or agricultural areas but could be located in areas with population and significant infrastructure.

HIGH HAZARD POTENTIAL: Dams assigned the high hazard potential classification are those where failure or misoperation will probably cause loss of human life.

APPENDIX C

INSPECTION CHECKLISTS

US Environmental Coal Combustion Dam Is contrantice Filling rrReceived, Clerk's Office 08/127/2020

Site Name:	Hennepin Power St	ation		Date:	5/23/11		
Unit Name: East Ash Impoundment		Operator's Name: Dynergy Midwest Generation, LLC			n, LLC		
Unit I.D.:	NPDES IL 0001554	4		Hazard Potential (Classification: High	Significant	Low
Inspector's Name	e: Patrick J. Harrison, P.	E. and [Doug	P. Simon, P.E.			
Check the appropriate box	Check the appropriate box below. Provide comments when appropriate. If not applicable or not available, record "N/A".						<u>or</u>
embankment areas. If separate forms are used, identify approximate area that the form applies to in comments.							
		Yes	No			Yes	No
1. Frequency of Compan	y's Dam Inspections?	Quarte	erly	18. Sloughing or bulging or	slopes?		√
2. Pool elevation (operate	or records)? See Note Below	V		19. Major erosion or slope deterioration?			✓
3. Decant inlet elevation	(operator records)?			20. Decant Pipes: Se	e Note Below		
4. Open channel spillway	elevation (operator records)?			Is water entering inlet, I	out not exiting outlet?		
5. Lowest dam crest elev	vation (operator records)?	494.	.0	Is water exiting outlet, b	out not entering inlet?		
6. If instrumentation is pr recorded (operator rec	esent, are readings cords)?	\checkmark		Is water exiting outlet fl	owing clear?		
7. Is the embankment cu	rrently under construction?	\checkmark		21. Seepage (specify locati and approximate seepage	on, if seepage carries fines rate below):	,	
8. Foundation preparation topsoil in area where em	n (remove vegetation,stumps, bankment fill will be placed)?	\checkmark		From underdrain?			\checkmark
9. Trees growing on emb largest diameter below	ankment? (If so, indicate w)	\checkmark		At isolated points on em	bankment slopes?		\checkmark
10. Cracks or scarps on	crest?		\checkmark	At natural hillside in the	embankment area?		✓
11. Is there significant se	ttlement along the crest?		\checkmark	Over widespread areas	?		\checkmark
12. Are decant trashrack	s clear and in place?See Note B	elow		From downstream found	lation area?		\checkmark
13. Depressions or sinkh whirlpool in the pool a	oles in tailings surface or area?		\checkmark	"Boils" beneath stream	or ponded water?		\checkmark
14. Clogged spillways, gr	roin or diversion ditches?			Around the outside of the	ne decant pipe?		\checkmark
15. Are spillway or ditch l	linings deteriorated?			22. Surface movements in	valley bottom or on hillside?	?	✓
16. Are outlets of decant	or underdrains blocked?		\checkmark	23. Water against downstre	eam toe?	\checkmark	
17. Cracks or scarps on	slopes?		\checkmark	24. Were Photos taken dur	ing the dam inspection?	✓	
Main advance abarrance in these items acculates instability and abaylates reported for							

Major adverse changes in these items could cause instability and should be reported for further evaluation. Adverse conditions noted in these items should normally be described (extent, location, volume, etc.) in the space below and on the back of this sheet.

Inspection Issue #

Comments

2. No pool, decant, or open channel spillway is present in the East Ash

Impoundment.

7. Dynegy has received a permit to construct a landfill over an inactive

portion of Pond 2 and is referred to as the East Ash Impoundment.

8. Based on boring logs and observations.

9. Largest tree diameter noted was approximately 30 inches.

Items 12, 14, 15 and 20 do not apply to this impoundment.

Coal Combustion Waste (CCW) Impoundment Inspection

Impoundment NPDES Permit # IL 0001554	INSPECTOR <u>Patrick J. Harrison, P.E.</u>
Date <u>May 23, 2011</u>	Doug P. Simon, P.E.
Immound mont Norman Track 1 7	
Impoundment Name <u>East Ash Impoundment</u>	
Impoundment Company Dynergy Midwest Genera	ation, LLC
EPA Region <u>Region V</u>	
State Agency (Field Office) Addresss Illinois Dep	artment of Natural Resources
Springfield,	Illinois
Name of Impoundment East Ash Impoundment	
(Report each impoundment on a separate form under	the same Impoundment NPDES
Permit number)	-
New X Update	

	Yes	No	Dynergy is
Is impoundment currently under construction?	X		building a land-
Is water or ccw currently being pumped into			fill on the
the impoundment?		X	impoundment.

IMPOUNDMENT FUNCTION: ______This impoundment has been inactive since 1995 and___ stores CCW from plant operations prior to 1995.

Nearest Downstrea	am Town :	Name	Hennepin	l			
Distance from the	impoundmen	nt	4 miles			-	
Impoundment	-						
Location:	Longitude _	89	Degrees _	18	Minutes _	28	Seconds
	Latitude _	41	Degrees _	18	Minutes _	10	Seconds
	State <u>IL</u>		County	Putna	m County		

Does a state agency regulate this impoundment? YES <u>x</u> NO <u>____</u>

If So Which State Agency? The Illinois Environmental Protection Agency regulates the environmental concerns associated with the impoundment through a Closure Protocol.

<u>HAZARD POTENTIAL</u> (In the event the impoundment should fail, the following would occur):

LESS THAN LOW HAZARD POTENTIAL: Failure or misoperation of the dam results in no probable loss of human life or economic or environmental losses.

_____ LOW HAZARD POTENTIAL: Dams assigned the low hazard potential classification are those where failure or misoperation results in no probable loss of human life and low economic and/or environmental losses. Losses are principally limited to the owner's property.

 \underline{X} SIGNIFICANT HAZARD POTENTIAL: Dams assigned the significant hazard potential classification are those dams where failure or misoperation results in no probable loss of human life but can cause economic loss, environmental damage, disruption of lifeline facilities, or can impact other concerns. Significant hazard potential classification dams are often located in predominantly rural or agricultural areas but could be located in areas with population and significant infrastructure.

_____ HIGH HAZARD POTENTIAL: Dams assigned the high hazard potential classification are those where failure or misoperation will probably cause loss of human life.

DESCRIBE REASONING FOR HAZARD RATING CHOSEN:

The Illinois River abuts the northern embankment of the East Ash Impoundment. Potential failure of the northern impoundment embankment could result in significant environmental impacts to areas outside of Utility owned property.

CONFIGURATION:

<u>TYPE OF OUTLET</u> (Mark all that apply)

Open Channel Spillway	TRAPEZOIDAL	TRIANGULAR
Trapezoidal	Top Width	Top Width
Triangular	Denth	
Rectangular	- Depui	V V Dopin
Irregular	Bottom Width	
depth	RECTANCIU AR	
bottom (or average) widt	h	Average Width
top width	Depth Width	Avg Depth
Outlet		
inside diameter		
Material		Inside Diameter
corrugated metal		
concrete plastic (hdpe_pvc_etc.)		
other (specify)		
outer (speeng)		
Is water flowing through the out	elet? YES NO	
_X No Outlet		
Other Type of Outlet (s	pecify)	
The Impoundment was Designe	d By <u>Illinois Power Comp</u>	any

-

Electronic Filing: Received, Clerk's Office 08/27/2020				
Has there ever been a failure at this site? YES	NOX			
If So When?				
If So Please Describe :				

Electronic Filing: Received, Clerk's Office 08/27/2020
Has there ever been significant seepages at this site? YES NOX
If So When?
IF So Please Describe:
· · · · · · · · · · · · · · · · · · ·

Has there ever been any measures undertaken to more Phreatic water table levels based on past seepages of at this site?	nitor/lower breaches YES	_NO _	_X
If so, which method (e.g., piezometers, gw pumping	,)?		
If so Please Describe :			
	· · · · · · · · · · · · · · · · · · ·		

US Environmental Coal Combustion Dam Is citicanic Filing rrReceived, Clerk's Office Office (1977)

Site Name:	Hennepin Power St	ation		Date:	5/23/11		
Unit Name: Active Ash Impoundment		Operator's Name:	Dynergy Midwest	Generatio	n, LLC		
Unit I.D.:	IL50363			Hazard Potential (Classification ^{: High}	Significant	Low
Inspector's Name	: Patrick J. Harrison, P.	E. and	Doug	P. Simon, P.E.			
Check the appropriate box b	below. Provide comments when	n approp	riate. If r	not applicable or not available	e, record "N/A". Any unusua	al conditions o	r
embankment areas. If separate forms are used, identify approximate area that the form applies to in comments.							
		Yes	No			Yes	No
1. Frequency of Company	s Dam Inspections?	Quar	terly	18. Sloughing or bulging or	slopes?		√
2. Pool elevation (operator	records)? See Note Below	489	9.5	19. Major erosion or slope of	deterioration?		√
3. Decant inlet elevation (o	perator records)?	489	9.5	20. Decant Pipes:			
4. Open channel spillway e	elevation (operator records)?	N		Is water entering inlet, t	out not exiting outlet?		√
5. Lowest dam crest elevat	tion (operator records)?	494	4.0	Is water exiting outlet, b	out not entering inlet?		√
6. If instrumentation is pres recorded (operator record	sent, are readings rds)?	\checkmark		Is water exiting outlet flo	owing clear?	\checkmark	
7. Is the embankment curre	ently under construction?		\checkmark	21. Seepage (specify locati and approximate seepage	on, if seepage carries fines rate below):	,	
8. Foundation preparation topsoil in area where emba	(remove vegetation,stumps, ankment fill will be placed)?	\checkmark		From underdrain?			\checkmark
9. Trees growing on embai largest diameter below)	nkment? (If so, indicate	\checkmark		At isolated points on em	bankment slopes?		✓
10. Cracks or scarps on cro	est?		\checkmark	At natural hillside in the	embankment area?		✓
11. Is there significant settl	lement along the crest?		\checkmark	Over widespread areas?	?		√
12. Are decant trashracks	clear and in place?	✓		From downstream found	lation area?		\checkmark
13. Depressions or sinkhol whirlpool in the pool are	es in tailings surface or ea?		<	"Boils" beneath stream o	or ponded water?		\checkmark
14. Clogged spillways, gro	in or diversion ditches?		✓	Around the outside of the	ne decant pipe?		\checkmark
15. Are spillway or ditch lin	ings deteriorated?		✓	22. Surface movements in	valley bottom or on hillside	?	√
16. Are outlets of decant of	r underdrains blocked?		\checkmark	23. Water against downstre	eam toe?	\checkmark	
17. Cracks or scarps on slo	opes?		\checkmark	24. Were Photos taken dur	ing the dam inspection?	✓	
Maior adverse chan	ges in these items coul	d caus	e insta	bility and should be r	eported for	1 I	

Major adverse changes in these items could cause instability and should be reported for further evaluation. Adverse conditions noted in these items should normally be described (extent, location, volume, etc.) in the space below and on the back of this sheet.

<u>Inspection Issue #</u>
Comments
There are three ponds that make up this impoundment. The elevation provided refers to that in the Primary pond which is also the highest elevation as referenced in the Operation and Maintenance Plan.
<u>No open channel spillway was present.</u>

8. Based on available soil borings.

9. Largest tree diameter noted was approximately 30 inches.

Coal Combustion Waste (CCW) Impoundment Inspection

Impoundment NPDES Permit # <u>IL 0001554</u>	INSPECTOR_Patrick J. Harrison, P.E.
Date <u>May 23, 2011</u>	Doug P. Simon, P.E.
•	
Impoundment NameActive Ash Impoundment	
Impoundment Company Dynergy Midwest Gene	ration, LLC
EPA Region <u>Region V</u>	
State Agency (Field Office) Addresss	partment of Natural Resources
Springfield	l, Illinois
Name of ImpoundmentActive Ash Impoundmen	nt
(Report each impoundment on a separate form under	er the same Impoundment NPDES
Permit number)	-
New <u>X</u> Update	
	Voc No

	165	INO
Is impoundment currently under construction?		X
Is water or ccw currently being pumped into		
the impoundment?	_X	

IMPOUNDMENT FUNCTION: <u>Settlement of CCW that is sluiced into the impoundment.</u>

Nearest Downstre	am Town : N	ame Hennepin	
Distance from the	impoundment _	4 miles	
Impoundment			
Location:	Longitude <u>4</u>	<u>1</u> Degrees <u>18</u> Minutes <u>00</u> Second	S
	Latitude _8	Degrees <u>18</u> Minutes <u>13</u> Second	S
	StateIL	County Putnam County	-
Does a state agend	cy regulate this	impoundment? YES <u>x</u> NO	
If So Which State	Agency? <u>The</u>	Illinois Department of Natural Resources regu	<u>ilates</u> discharge
	of w	vater through NPDES permit and a portion of t	he
	Imp	oundment as a regulated dam.	

<u>HAZARD POTENTIAL</u> (In the event the impoundment should fail, the following would occur):

LESS THAN LOW HAZARD POTENTIAL: Failure or misoperation of the dam results in no probable loss of human life or economic or environmental losses.

_____ LOW HAZARD POTENTIAL: Dams assigned the low hazard potential classification are those where failure or misoperation results in no probable loss of human life and low economic and/or environmental losses. Losses are principally limited to the owner's property.

X SIGNIFICANT HAZARD POTENTIAL: Dams assigned the significant hazard potential classification are those dams where failure or misoperation results in no probable loss of human life but can cause economic loss, environmental damage, disruption of lifeline facilities, or can impact other concerns. Significant hazard potential classification dams are often located in predominantly rural or agricultural areas but could be located in areas with population and significant infrastructure.

_____ HIGH HAZARD POTENTIAL: Dams assigned the high hazard potential classification are those where failure or misoperation will probably cause loss of human life.

DESCRIBE REASONING FOR HAZARD RATING CHOSEN:

The Illinois River abuts the northern embankment of the Active Ash Impoundment. Potential failure of the northern impoundment embankment could result in significant environmental impacts to areas outside of Utility owned property.

CONFIGURATION:

<u>TYPE OF OUTLET</u> (Mark all that apply)

Open Channel Spillway	TRAPEZOIDAL	TRIANGULAR
Trapezoidal	Top Width	Top Width
Triangular	A Denth	Denth
Rectangular	- Lopin	V V Dopui
Irregular	Bottom Width	
depth	RECTANGULAR	
bottom (or average) width	<u>ADOTHIOODIM</u>	Average Width
top width	Depth Width	Avg Depth
X_Outlet		
inside diameter		
Varies: See Below.		
Material		Incida Diamatar
corrugated metal		
welded steel		
X concrete		
plastic (hdpe, pvc, etc.)	· · · · · · · · · · · · · · · · · · ·	¥
other (specify)		
Is water flowing through the outlet	? YES NO	X
There are three	ponds that make up the	active ash pond. The outlet
No Outlet diameters vary	from approximately 12	inches to 30 inches.
Other Type of Outlet (spec	ify)	
The Impoundment was Designed B	У	

Electronic Filing: Received, Clerk's Office 08/27/2020			
Has there ever been a failure at this site? YES	NOX		
If So When?			
If So Please Describe :			

Electronic Filing: Received, Clerk's Office 08/27/2020
Has there ever been significant seepages at this site? YES NOX
If So When?
IF So Please Describe:
· · · · · · · · · · · · · · · · · · ·

Has there ever been any measures undertaken to more Phreatic water table levels based on past seepages of at this site?	nitor/lower breaches YES	_NO _	_X
If so, which method (e.g., piezometers, gw pumping	,)?		
If so Please Describe :			
	· · · · · · · · · · · · · · · · · · ·		

US Environmental Coal Combustion Dam Is contrantice Filing in Received, Clerk's Office 08/12/2020

Site Name:	Hennepin Power St	ation		Date: 5/23/11		
Unit Name:	West Ash Impound	ment		Operator's Name: Dynergy Midwest Ge	eneratio	n, LLC
Unit I.D.:	NPDES IL 000155	4		Hazard Potential Classification: High s	ignificant	Low
Inspector's Name	e: Patrick J. Harrison, P.	E. and	Doug	P. Simon, P.E.		
Check the appropriate box	below. Provide comments when	n appropi	riate. If n	ot applicable or not available, record "N/A". Any unusual of	conditions o	r
embankment areas. If sepa	snould be noted in the comment rate forms are used, identify ap	ts section proximate	i. For lar e area th	ge diked embankments, separate checklists may be used the form applies to in comments.	for different	
Yes No Yes No						
1. Frequency of Company	's Dam Inspections?	Quar	terly	18. Sloughing or bulging on slopes?		√
2. Pool elevation (operato	r records)?	455	5.6	19. Major erosion or slope deterioration?		✓
3. Decant inlet elevation (operator records)?	45	5.6	20. Decant Pipes:		
4. Open channel spillway	elevation (operator records)?	X 7		Is water entering inlet, but not exiting outlet?		✓
5. Lowest dam crest eleva	ation (operator records)?	460	0.0	Is water exiting outlet, but not entering inlet?		\checkmark
6. If instrumentation is pre recorded (operator reco	esent, are readings ords)?	\checkmark		Is water exiting outlet flowing clear?See Note Below	v	
7. Is the embankment cur	rently under construction?		\checkmark	21. Seepage (specify location, if seepage carries fines, and approximate seepage rate below):		
8. Foundation preparation topsoil in area where emb	(remove vegetation,stumps, ankment fill will be placed)?	\checkmark		From underdrain?		<
9. Trees growing on emba largest diameter below	ankment? (If so, indicate	\checkmark		At isolated points on embankment slopes?		\checkmark
10. Cracks or scarps on c	rest?		\checkmark	At natural hillside in the embankment area?		✓
11. Is there significant set	tlement along the crest?		\checkmark	Over widespread areas?		\checkmark
12. Are decant trashracks	clear and in place?		\checkmark	From downstream foundation area?		✓
13. Depressions or sinkho whirlpool in the pool a	oles in tailings surface or rea?		\checkmark	"Boils" beneath stream or ponded water?		\checkmark
14. Clogged spillways, gro	oin or diversion ditches?		✓	Around the outside of the decant pipe?		\checkmark
15. Are spillway or ditch li	nings deteriorated?		✓	22. Surface movements in valley bottom or on hillside?		√
16. Are outlets of decant of	or underdrains blocked?		\checkmark	23. Water against downstream toe?	\checkmark	
17. Cracks or scarps on s	lopes?		\checkmark	24. Were Photos taken during the dam inspection?	\checkmark	

Major adverse changes in these items could cause instability and should be reported for further evaluation. Adverse conditions noted in these items should normally be described (extent, location, volume, etc.) in the space below and on the back of this sheet.

Inspection Issue #

Comments

4. No open channel spillway was present.

8. Based on boring logs and observations.

9. Largest tree diameter noted was approximately 30 inches.

20(c). No water was entering or exiting the impoundment.

Coal Combustion Waste (CCW) Impoundment Inspection

Impoundment NPDES Permit # _IL 0001554	INSPECTOR Patrick J. Harrison, P.E.
Date <u>May 23, 2011</u>	Doug P. Simon, P.E.
Impoundment Name <u>West Ash Impoundment</u>	
Impoundment Company Dynergy Midwest Gen	eration, LLC
EPA Region <u>Region V</u>	
State Agency (Field Office) Addresss Determined and the state of the state o	epartment of Natural Resources
Springfiel	d, Illinois
Name of Impoundment West Ash Impoundmen	t
(Report each impoundment on a separate form und	er the same Impoundment NPDES
Permit number)	-
New X Update	

	Yes	No
Is impoundment currently under construction?		X
Is water or ccw currently being pumped into		
the impoundment?		_X

IMPOUNDMENT FUNCTION: <u>This impoundment has been inactive since 1995 and</u> stores CCW from plant operations prior to 1995.

Nearest Downstre	am Town :	Name	Henne	pin, Il	linois		
Distance from the	impoundme	nt	4 miles	<u> </u>		_	
Impoundment							
Location:	Longitude _	89	Degrees	19	_ Minutes _	28	_ Seconds
	Latitude	41	Degrees	18	_Minutes _	00	Seconds
	State IL		County _	Put	nam		

Does a state agency regulate this impoundment? YES <u>x</u> NO _____

If So Which State Agency? <u>The Illinois Environmental Protection Agency regulates discharge</u> from the impoundment through the NPDES permit. **<u>HAZARD POTENTIAL</u>** (In the event the impoundment should fail, the following would occur):

LESS THAN LOW HAZARD POTENTIAL: Failure or misoperation of the dam results in no probable loss of human life or economic or environmental losses.

_____ LOW HAZARD POTENTIAL: Dams assigned the low hazard potential classification are those where failure or misoperation results in no probable loss of human life and low economic and/or environmental losses. Losses are principally limited to the owner's property.

 \underline{X} SIGNIFICANT HAZARD POTENTIAL: Dams assigned the significant hazard potential classification are those dams where failure or misoperation results in no probable loss of human life but can cause economic loss, environmental damage, disruption of lifeline facilities, or can impact other concerns. Significant hazard potential classification dams are often located in predominantly rural or agricultural areas but could be located in areas with population and significant infrastructure.

_____ HIGH HAZARD POTENTIAL: Dams assigned the high hazard potential classification are those where failure or misoperation will probably cause loss of human life.

DESCRIBE REASONING FOR HAZARD RATING CHOSEN:

The Illinois River abuts the northern embankment of the West Ash Impoundment. Potential failure of the northern impoundment embankment could result in significant environmental impacts to areas outside of Utility owned property.

CONFIGURATION:

<u>TYPE OF OUTLET</u> (Mark all that apply)

Open Channel Spillway	TRAPEZOIDAL	TRIANGULAR
Trapezoidal	Top Width	Top Width
Triangular	A Danth	
Rectangular	Depui	V V Depui
Irregular	Bottom Width	
depth	RECTANGULAR	IRREGULAR
bottom (or average) width		Average Width
top width	Depth Width	Avg Depth
<u>X</u> Outlet		
12 in incide diameter		
Material		Incida Diamatar
corrugated metal		
Y welded steel		
	\backslash	
plastic (hdpe_pvc_etc.)		V
other (specify)		
· · · · · · · · · · · · · · · · ·		
Is water flowing through the outlet	? YES NC	0X
No Outlet		
Other Type of Outlet (spec	;ify)	
The Impoundment was Designed B	y <u>Sargent & Lundy</u>	

Electronic Filing: Received, Clerk's Office 08/27/2020			
Has there ever been a failure at this site? YES	NOX		
If So When?			
If So Please Describe :			

Electronic Filing: Received, Clerk's Office 08/27/2020
Has there ever been significant seepages at this site? YES NOX
If So When?
IF So Please Describe:
· · · · · · · · · · · · · · · · · · ·

Has there ever been any measures undertaken to more Phreatic water table levels based on past seepages of at this site?	nitor/lower breaches YES	_NO _	_X
If so, which method (e.g., piezometers, gw pumping	,)?		
If so Please Describe :			
	· · · · · · · · · · · · · · · · · · ·		

APPENDIX D

PREVIOUS INSPECTION REPORTS

Dynegy Midwest Generation, Inc. 2828 North Monroe Street Decator, Flinois 62526-3269

÷.,

December 31, 2001

Mr. Dennis L. Kennedy, P.E. Senior Water Resources Engineer Illinois Department of Natural Resources Office of Water Resources 524 South Second Street Springfield, IL 62701-1787

Dear Mr. Kennedy:

Hennepin Power Station; East Ash Pond Dam Safety Permit No. 21922 Dam I.D. No. IL50363

2001 Five-Year Inspection Report

Enclosed is a signed copy of the 2001 inspection report for the Hennepin Power Station's east ash pond dam. Mr. Jeffrey Lamb, professional civil engineer with Dynegy-Illinois Power's Engineering and Technical Services Department, conducted the professional engineer inspection on November 27, 2001. This inspection is required by Section 702.40(b)(5) of the Rules for the Construction and Maintenance of Dams and the conditions of IDNR Permit No. 21922.

The inspection report shows that the overall condition of the facility is good. The only minor maintenance that needs to be conducted is the continued removal of sapling trees on the embankments. This will be conducted as a part of routine maintenance during next year. Sapling tree removal was also conducted as a part of routine maintenance during the previous five years as recommended in the 1996 inspection report.

An Owner's Maintenance Statement, signed by Mr. James G. Dodson, Plant Manager, Hennepin Power Station, is also included.

If you have any questions regarding this report, please contact me at 217/872-2359.

Sincerely, Dynegy Midwest Generation

Thomas L. Davis

Thomas L. Davis, P.E. Senior Environmental Professional

bc: J.G.Dodson, w/att., S-10

÷.,

۰,

- J.P.Augspols w/att., S-10
- B.J. Marshall/T.E. Tuttle/File: Hennepin PS Dam Inspection Reports, w/att., A-05

÷

1

| | Illinois Power Company 500 South 27th Mireet Decatur, II 62521-2200

November 30, 2001

Mr. B. J. Marshall Dynegy Midwest Generation 2828 N. Monroe St. Decatur, IL 62526

ı

RE: Hennepin Power Station Hennepin Ash Surface Impoundment 2001 Dam Inspection

Dear Brett:

Enclosed is the dam inspection report for the Hennepin Ash Improvement. The inspection was performed on Wednesday, November 27, 2001. John Augspol from the plant accompanied me on the inspection.

The following items need attention (Condition Code IM or MM).

ltem	Issue	Remediation
Embankment	Scattered trees/saplings on or near the elay liner around perimeter of primary & final ponds	Spray to kill, out down later

Please forward the inspection form to the plant for execution of the Owner's Maintenance Statement by the Plant Manager.

If you have any questions, please call me.

Sincerely,

amb, P.E.

Manager Civil Engineering

Enclosure

Ce: J. G. Dodson w/o attachments S-10 J. P. Augspol w/attachments S-10 CS 491417 ٩.

·• .

Dam Inspection Report
Name of Dam Hennepin Ash Surface, Impound Dam ID No. IL 50363
Permit Number <u>21922</u> Class of Dam <u>711</u>
Location <u>NE¹4</u> Section <u>Z6</u> Township <u>33 N</u> Range <u>ZW of 3rd P</u> M
Owner Dynegy Midwest Generation 815-339-9210 Name Telephone Number (Day)
RR#1 Box 200 AA 815 - 339 - 9215 Street Telephone Number (Night)
<u>Hennepin 61327-9737</u> County <u>Putnam</u> City Zip Code
Type of Dam Homogeneous Earthen Dam @ 4' Clay liner on upstream face
Type of Spillway Drop Structure @ Stop loss
Date(s) Inspected November 28,2001
Weather When Inspected Overcast @ mildwind
Temperature When Inspected <u>39° F</u>
Pool Elevation When Inspected Primary 481.51 Final 479.59
Tailwater Elevation When Inspected <u>NA</u>
Inspection Personnel:
Jeffry E Lamb Manager Civil Engineering Name Title
* ENGINEER John P. Augspol Chemist OF Name Title
Hue Title

The Department of Nautural Resources is requesting information that is necessary to accomplish the statutory purpose as outlined under the River, Lakes and Streams Act, 615 ILCS 5. Submittal of this information is REQUIRED. Failure to provide the required information could result in the initiation of non-compliance procedures as outlined in Section 3702.150 of the "Rules for Construction and Maintenance of Dams".

Name

Professional Engineer's Seal

Title

.

1

EARTH EMBANKMENT

.•.

ITEM	CONDITION	DEFICIENCIES	RECOMMENDED REMEDIAL MEASURES
Surface Cracks	ე ტ	NF	
Vertical and Horizontal Alignment of Crest	ں ع	R K	
Unusual Movement or Cracking At or Beyond Toe	J J	Str	
Sloughing or Erosion of Embankment and Abutment Slopes	ل رئ	OB	Small crosion rills @ SEc of primary Pend upstream & @ SWc of final pond upstreamface
Upstream Face Slope Protection	し り	N.F.	
Seepage	પ્ર	ы С	
Filter and Filter Drains	NA		

Electronic Filing: Received, Clerk's Office 08/27/2020

;
ITEM	CONDITION CODE	DEFICIENCIES	RECOMMENDED REMEDIAL MEASURES
Animal Damage	J J	NF	
Embankment Drainage Ditches	GC	NE	
Vegetative Cover	ე ტ	ΨW	Scattered small trees & Saplings on liner - Spray to Kill and remove after dead.
Other (Name)			
Other			
Other			
Other			

4

,٠

EARTH EMBANKMENT (Continued)

ŧ

۰,

`

CONCRETE OR MASONRY DAMS

L

. .

ITEM	CONDITION	DEFICIENCIES	COMMENDED REMEDIAL MEASURES
Monolith Joints			
Contruction Joints			
Spalling of Concrete			42
Filters, Drains, etc.			
Riprap			
Other (Name)			

IF THE DAM IS GATED - Fill out the portion of the Principal Spillway Form related to Gated Spillways

	CONDITION		RECOMMENDED REMEDIAL MEASURES
	CODE	DEFICIENCIES	AND IMPLEMENTATION SCHEDULE
Depris			
Side Slope Stability			
Slope Protection			
Other (Name)			2
Other			
Other			
Other			

PRINCIPAL SPILLWAY APPROACH CHANNEL

Electronic Filing: Received, Clerk's Office 08/27/2020

Т

piltway Structure	RECOMMENDED REMEDIAL MEASURES AND IMPLEMENTATION SCHEDULE	Beam Seats for walkway at drap Structure have spalled or cracked 5 unface concrete. Observe for any further spalling (cracking of concrete. Support.					
Overflow S	DEFICIEN	RO	N F Mer	47		S П	С Ф
	CONDITION CODE	J	NT Underw			GC	. J J
区 Drop Inlet Spillway Ponds ユゼ こ	ITEM	Erosion, Spalling, Cavitation	Structure to Embankment Junction	Drains	Seepage Around or Into Structure	Surface Cracks	Structural Cracks

IF THE SPILLWAY IS GATED FILL OUT THE GATES SECTION

ł

Electronic Filing: Received, Clerk's Office 08/27/2020

•

• •

PRINCIPAL SPILLWAY

		PRINCIPAL SPILL (Continued)	WAY
		Uverflow Spillway Stru	cture Cated
ITEM	CONDITION	DEFICIENCIES	RECOMMENDED REMEDIAL MEASURES AND IMPLEMENTATION SCHEDUILE
Alignment of Abutment Walls	J J	С ГГ	
Construction Joints	C C	С F	
Filter and Filter Drains			
Trash Racks	2		
Bridge and Piers	J G	ЯO	Surface rust beginning to appear on beams & bolts.
Differential Settlement	ე ტ	Ш 2	
Other (Name)			
IF THE SPILLWAY IS GATED FILL	OUT THE GA	TES SECTION	

•

-43-

ŧ

Conduit
Χ

PRINCIPAL SPILLWAY (Continued)

[
(panc	

ITEM	CONDITION CODE	DEFICIENCIES	RECOMMENDED REMEDIAL MEASURES AND IMPLEMENTATION SCHEDULE
Erosion, Spalling, Cavitation	し 也	Ш 2	
Joint Separation	NIT buried	NE Underwater	
Seepage Around of Into Conduit	NT buri ul	NE d underwed er	
Surface Cracks	NH buriel	4 underwater	
Structural Cracks	NT buried	NE tunderwert er	
Trash Racks	ΝÅ		
Differential Settlement	JJ	5 т	
Alignment	しい	Z ₩	
Other (Name)			
IF THE SPILLWAY IS GATED FILL	OUT THE GA	ATES SECTION	

Electronic Filing: Received, Clerk's Office 08/27/2020

T

• :

PRINCIPAL SPILLWAY (Continued)

I.

		tes							
WAY	Other:	RECOMMENDED REMEDIAL MEASUR AND IMPLEMENTATION SCHEDULE							
PRINCIPAL SPILL	Dewatering	DEFICIENCIES	inter NE	NE Woter	N F				
	كموصا فمعا	CONDITION	NH Underu	трио IN	つり	٨A	ЛA		
	Rincipal Spillway	ITEM	Gate Sill	Gate Seals	Gate and Frame	Operating Machinery	Emergency Operating Machinery	Other (Name)	Other

iTEM	CONDITION	DEELCIENCIES	RECOMMENDED REMEDIAL MEASURES
Erosion, Spalling, Cavitation			AND IMPLEMENTATION SCHEDULE
Joint Separation			
Seepage Around or Into Conduit			
Intake Structure			42
Outlet Structure			
Outlet Channel			
Riprap			
Other (Name)			
Other			

<u>OUTLET WORKS</u> IF SEPARATE FROM PRINCIPAL SPILLWAY STRUCTURE

Electronic Filing: Received, Clerk's Office 08/27/2020

1

Type:	billway 3.6	" & RCC Pipe Discha" " praped basin.	roc into Outlet Works
ITEM	CONDITION	DEFICIENCIES	RECOMMENDED REMEDIAL MEASURES AND IMPLEMENTATION SCHEDULE
Erosion, Spalling, Cavitation	NA		
Structure to Embankment Junction	ل ل	NĔ	
Construction Joints	ΝA		
Surface Cracks	٩Ŵ		
Structural Cracks	NA		
Differential Alignment	NA	· · ·	
Expansion and Contraction Joints	NA		

· :

I.

ENERGY DISSIPATOR (Continued)	DEFICIENCIES AND IMPLEMENTATION SCHEDULE							
ENERGY DISSIPATOR (Continued)	DEFICIENCIES AND IMPLEMENT	Ш 2						
oiltway	CONDITION	ل ع	NA	ĄN				
Principal S ₁	ITEM	Riprap	Outlet Channel	Debris	Other (Name)	Other	Other	Other

٠.

Ŧ

Other:Name	RECOMMENDED REMEDIAL MEASURES AND IMPLEMENTATION SCHEDULE										
	DEFICIENCIES				NA						
	CONDITION						· · · ·				
Earth	ITEM	Erosion	Weeds, Logs, Other Obstructions	Side Slope Sloughing	Vegetation	Sedimentation	Riprap	Settlement of Crest	Downstream Channel	Other (Name)	

' :

. .

EMERGENCY SPILLWAY

 $\mathbf{L}:$

SUMMARY OF MAINTENANCE DONE AND/OR

REPAIRS MADE SINCE THE LAST INSPECTION

DATE OF PRESENT INSPECTION November 28, 2001

DATE OF LAST INSPECTION November 12, 1996

1. EARTH EMBANKMENT DAMS

Repaired gate latch on primary pond outlet structured noted in last inspection.

2. CONCRETE MASONRY DAMS

3. PRINCIPAL SPILLWAY

4. OUTLET WORKS

5. EMERGENCY SPILLWAY

-52-

L

APPROXIMATE WIDTH OF AFFECTED FLOODPLAIN

√∑ ✓

DOWNSTREAM DEVELOPMENT

**** 5

Owner's Maintenance Statement

, owner of <u>Hennepin Ash Impoundment</u> dam,
Dam Identification Number <u>IL 50363</u> , in <u>Potnam</u> County,
am maintaining the dam in accordance with the accepted maintenance plan which is part of
Permit Number 21922
James J. Jon Signature 12/27/01 Date

Owner's Operation and Maintenance Plan Statement

_, owner of Hennepin Ash Impoundment dam, 1, Dam Identification Number _____50363 in Putnam County, have reviewed the operation and maintenance plan including the Emergency Action Plan (EAP), I () have enclosed the appropriate revisions or (\checkmark) have determined that no revisions to the plan are necessary.

The Department of Nautural Resources is requesting information that is necessary to accomplish the statutory purpose as outlined under the River, Lakes and Streams Act, 615 ILCS 5. Submittal of this information is REQUIRED. Failure to provide the required information could result in the initiation of non-compliance procedures as outlined in Section 3702.160 of the "Rules for Construction and Maintenance of Dams".

Signature

Dynegy Midwest Generation, Inc 2828 North Monroe Street Decatur, IL 62526 3269 Fhone 217,876,3900 4ax 287,876 7475 Www.dynegy.com

December 11, 2006

Mr. Mike Diedrichsen, Acting Manager Downstate Regulatory Programs Division of Water Resources Management Office of Water Resources Illinois Department of Natural Resources One Natural Resources Way Springfield, IL 62702-1271

Dear Mr. Diedrichsen:

Hennepin Power Station; East Ash Pond Dam Safety Permit No. DS2004119 Dam I.D. No. IL50363

2006 Five-Year Inspection Report

Enclosed is a signed copy of the 2006 inspection report for the Hennepin Power Station's east ash pond dam. Mr. Joseph P. Kimlinger, and Illinois-registered professional civil engineer (no. 062-049181) with Dynegy Midwest Generation's Construction and Maintenance Department, conducted the professional engineer inspection of the embankments and outlet structures on November 20, 2006. This inspection is required by Section 3702.40(b)(5) of the <u>Rules for the Construction and Maintenance of Dams</u> and the conditions of IDNR Permit No. DS2004119.

The inspection report shows that the overall condition of the east ash pond system is good. The only minor maintenance that needs to be conducted is the continued removal of sapling trees on the embankments. This will be conducted as a part of routine maintenance during 2007. Sapling tree removal was also conducted as a part of the routine maintenance performed during the previous five years as recommended in the 2001 inspection report. Some spalling of concrete and rusting of steel walkway beams was also noted.

An <u>Owner's Maintenance Statement</u>, signed by Mr. James G. Dodson, Plant Manager, Hennepin Power Station, is also included.

If you have any questions regarding this report, please contact me at 217/872-2354 or Tom Davis at 217-872-2315.

Sincerely, Dynegy Midwest Generation, Inc.

Rick D. Diericx

Sr. Director – Operations Environmental Compliance Environmental Health and Safety

.

:

Dam Inspection Report

_

Ċ,

Name of Dam He	ennepin PS, As	h Surfa	ace Impoundmen	^{it} Dam i	D No	IL 50363
Permit Number_	DS200411	9	Class of Dam	111	_	
Location NE 1/4	Section	26	_ Township	33N	Range	2W of 3rd PM
Owner ^{Dynegy M}	lidwest Gene	ration		81	5-339-9210)
	Name			Telephon	e Number	(Day)
RR1, Box 200 AA	N			815	5-339-9215	i
S	Street			Felephone	Number ((Night)
Hennepin, IL	6132	27	County		Putnam	
City	Zip	Code				
Type of Dam Hom	logeneous Ea	Inthen	Dam with clay	and geos	ynthetic/cla	ay liner
Type of Spillway _	Drop structure	and s	stop logs			
Date(s) Inspected	November 20) , 20 0	6			' . <u>.</u>
Weather When Ins	pected Sunn	y and	Breezy			-
Temperature When	n inspected $\frac{3}{2}$	6 deg	. F			
Pool Elevation Whe	en inspected	Prime	н <mark>у 4</mark> 81.5; Seco	ondary 479	9.6	
Tailwater Elevation	When Inspe	cted _	NA		-	
- Vite		In	spection Perso	nnel:		
BHP. NM		J	oseph P. Kimli	nger P.E.	Construc	dion Manager
S 002-068161	5 12 L	Na	ame		Title	
PROFESSION			John Augs	pols	Sr, Env &	Chem, Engineer
1 AND		Na	ime		Title	
A REPER	GUUUN	w_				
LIC EXPRES	upolo	Na /	тe		Titi o	
Profassional Engine	er's Seal	Na	me		Title	

The Department of Nautural Recourtee in requesting information that is nonassary to accurre its the Elektricky purpose as outlined under the River, Lakes and Streams Act, 615 ILCS 5 - Submitted of the Information is RECUIRED. Fortune to provide the required information could result in the initiation of non-compliance procedures as outlined in Section 3702.160 of the "Rules for Completion and Haintenance of Dame".

CONDITION CODES

NE - No evidence of a problem

GC - Good condition

- MM Item needing minor maintenance and/or repairs within the year, the safety or integrity of the item is not yet imperiled
- IM Item needing immediate maintenance to restore or ensure its safety or integrity
- EC Emergency condition which if not immediately repaired or other appropriate measures taken could lead to failure of the dam
- OB Condition requires regular observation to ensure that the condition does not become worse

NA - Not applicable to this dam

NI - Not inspected - list the reason for non-inspection under deficiencies

All Condition Codes will be listed with the following abbreviations:

P = Primary Cell

S = Secondary (polishing) Cell

N
IKM
BAN
HEM
EARTI

ITEM	CONDITION	DEFICIENCIES	RECOMMENDED REMEDIAL MEASURES
Surface Cracks	NE	NA	AND IMPLEMENTATION SCHEDULE
Vertical and Horizontal Alignment of Crest	ပ္ပ	NA	
Unusual Movement or Cracking At or Beyond Toe	Ш Z	AN	
Sloughing or Erosion of Embankment and Abutment Slopes	ပ္ပ	NA	
Upstream Face Slope Protection	ပ္ပ	AN	
Seepage	Ш Z	AN	
Filter and Filter Drains	AN		-

EARTH EMBANKMENT (Continued)

ITEM	CONDITION	DEFICIENCIES	RECOMMENDED REMEDIAL MEASURES
Animal Damage	Ш	NA	AND IMPLEMENTATION SCHEDULE
Embankment Drainage Ditches	09 09	ΥŅ	
Vegetative Cover	B	Some small trees and saplings near the embankment	Observe the small trees and saplings and spray to kill or remove as time allows. No issue at this time.
Other (Name)	AN .		
Other	AN		
Other	Ϋ́́		
Other	VN		

CONCRETE OR MASONRY DAMS

:

ITEM	CONDITION	DEFICIENCIES	RECOMMENDED REMEDIAL MEASURES
Seepage	AN		AND IMPLEMENTATION SCHEDULE
Structure to Abutment/ Embankment Junctions	AN		
Water Passages	AN		
Foundation	AN		
Surface Cracks in Concrete Surfaces	YZ Z		
Structural Cracking	ΥN Y		
Vertical and Horizontaf Alignment	Ϋ́		

IRY DAMS	
TE OR MASON	CONTINIER
CONCRET	-

ITEM		DEFICIENCE	RECOMMENDED REMEDIAL MEASURES
Monolith Joints	NA	DEFICIENCIES	AND IMPLEMENTATION SCHEDULE
Contruction Joints	NA		
Spalling of Concrete	, NA		
		-	
Filters, Drains, etc.	A N		
-			•
Riprap	AN		
Other (Name)	NA		

IF THE DAM IS GATED - Fill out the portion of the Principal Spillway Form related to Gated Spillways

Electronic Filing: Received, Clerk's Office 08/27/2020

-40-

ITEM	CONDITION	DEFICIENCIES	RECOMMENDED REMEDIAL MEASURES
Debris	AN		AND IMPLEMENTATION SCHEDULE
Side Slope Stability	AN		
Slope Protection	Ϋ́		
Other (Name)	AN		
Other	Ϋ́		
Other	ΨN		
Other	AN		
	-	-	

PRINCIPAL SPILLWAY APPROACH CHANNEL

-41-

		PRINCIPAL SPILL	WAY
K Drop Inlet Spillway		Overflow Spillway Stru	cture
ITEM	CONDITION CODE	DEFICIENCIES	RECOMMENDED REMEDIAL MEASURES
Erosion, Spalling, Cavitation	OB	Some spalling of concrete near walkway beam supports.	Observe the concrete condition in the outfall structures, primarily near the beam seats. Contact a certified engineer if condition worsens.
Structure to Embankment Junction	Z .	Underwater	
Drains	ΥN		
Seepage Around or Into Structure	z	Underwater	
Surface Cracks	ШZ	NA	
Structural Cracks	Ш N	AN	
IF THE SPILLWAY IS GATED FILL	. OUT THE GA	TES SECTION	

-42-

E		PRINCIPAL SPILL	WAY
L Drop Inlet Spillway		Overflow Spillway Stru	cture Gated
ITEM	CONDITION CODE	DEFICIENCIES	RECOMMENDED REMEDIAL MEASURES
Alignment of Abutment Walls	AN	NA	THE THEN ATION SCHEDULE
			·
Construction Joints	ပ္ပ	AN	
Filter and Filter Drains	νA		
Trash Racks	NA		
Bridge and Piers	OB	Rust forming on bridge beams and connections.	Observe and contact a certified engineer if condition worsens.
Differential Settlement	NE	NA	
Other (Name)	AN	- - -	
IF THE SPILLWAY IS GATED FILL	OUT THE GA	JES SECTION	

-43-

X Conduit		PRINCIPAL SPILL (Continued)	WAY
	CONDITION		
ITEM	CODE	DEFICIENCIES	
Erosion, Spalling, Cavitation	Ш N	NA	
Joint Separation	Ш Z	NA	
Seepage Around of Into Conduit	Z	Underwater	
Surface Cracks	Ī	Underwater	
			•
Structural Cracks	Ē	Underwater	
Trash Racks	AN		
Differential Settlement	Ц И И	NA	
Alignment	ပ ဖ	ν	
	NA		
Umer (Name)		-	
IF THE SPILLWAY IS GATED FILL	OUT THE G/	ATES SECTION	

-44-

Chute

ITEM	CONDITION		RECOMMENDED REMEDIAL MEASURES
Erosion, Spalling, Cavitation	NA .	DEFICIENCIES	AND IMPLEMENTATION SCHEDULE
Structure to Embankment Junction	AN		
Construction Joints	٩N		
Expansion and Contraction Joints	V V		
Differential Settlement	ΨN		
Surface Cracks	AN		
Structural Cracks	AA	·	
Walt Alignment	AN		
Other (Name)	NA		
IF THE SPILLWAY IS GATED FILL	OUT THE GAT	IES SECTION	

٤		PRINCIPAL SPILL	WAY
A Principal Spillway		Dewatering	Other:
ITEM	CONDITION	DEFICIENCIES	RECOMMENDED REMEDIAL MEASURES
Gate Sill	z	Underwater	The sill and seals are located under stop logs and could not be inspected.
Gale Seals	Z	Underwater	
Gate and Frame	ပ္ ဗ	ШN	Stop logs and guides were in good condition.
Operating Machinery	ΥN		
Emergency Operating Machinery	ΥN		
Other (Name)	ΨN		
Other	ΥN		
· · · · · · · · · · · · · · · · · · ·			

Ì

<u>OUTLET WORKS</u> PARATE FROM PRINCIPAL SPILLWAY STRUCTURE
IF SEPAR

RECOMMENDED REMEDIAL MEASURES	AND IMPLEMENTATION SCHEDULE									
DEFICIENCIES										
CONDITION	NA	NA	Υ Ζ	AN	Ϋ́	NA	Ň	Ϋ́́	AN	
ITEM	Erosion, Spalling, Cavitation	Joint Separation	Seepage Around or Into Conduit	Intake Structure	Outlet Structure	Outlet Channel	Riprap	Other (Name)	Other	

-47-

X Outlet Works	ENDED REMEDIAL MEASURES							
	DEFICIENCIES AND IMPI	AN	NA	AN	AN	AN	YN	•
illway	CONDITION	Ш Z	00	0 9	ЧË	ШN	NE	Ч Ч
Type:	ITEM	Erosion, Spalling, Cavitation	Structure to Embankment Junction	Construction Joints	Surface Cracks	Structural Cracks	Differential Alignment	Expansion and Contraction Joints

ENERGY DISSIPATOR

Electronic Filing: Received, Clerk's Office 08/27/2020

-48-

<u>VTOR</u>	× Outlet Works	RECOMMENDED REMEDIAL MEASURES AND IMPI FMENTATION SCHEMIN F							
ENERGY DISSIP/ (Continued)		DEFICIENCIES	NA	AN	AN				
	JIIWay	CODE	ပ ဗ	ပ္ပ	ШN	Ч И	AN	AN	∀ Z
		ITEM	Riprap	Outlet Channel	Debris	Other (Name)	Other	Other	Other

-49-

Earth	·		Other:Name
ITEM	CONDITION	DEFICIENCIES	RECOMMENDED REMEDIAL MEASURES
Erosion	٩		AND IMPLEMENTATION SCHEDULE
Weeds, Logs, Other Obstructions	NA		
Side Slope Sloughing	AN		
Vegetation	AN		
Sedimentation	AN		
Riprap	NA		
Settlement of Crest	AN		
Downstream Channel	AN		
Other (Name)	NA		

EMERGENCY SPILLWAY

Electronic Filing: Received, Clerk's Office 08/27/2020

-50-

SUMMARY OF MAINTENANCE DONE AND/OR

REPAIRS MADE SINCE THE LAST INSPECTION

 DATE OF PRESENT INSPECTION
 November 20, 2006`

 DATE OF LAST INSPECTION
 November 28, 2001

1. EARTH EMBANKMENT DAMS

The pond level was raised in 2004 with the extension of the liner. The liner extension consisted of one foot of clay overlain with a polypropylene liner. Minor erosion repairs, mowing and general maintenance have been performed during the last five years.

2. CONCRETE MASONRY DAMS

NA

3. PRINCIPAL SPILLWAY

NA

4. OUTLET WORKS

NA

5. EMERGENCY SPILLWAY

NA

Owner's Maintenance Statement

		Hennepin PS Ash Surface I	mpoundment
I,James G. Dodson	, owner of		dam,
Dam Identification Number	JL 50383	, ínPutna	mCounty,

am mainteining the dam in accordance with the accepted maintenance plan which is part of Permit Number DS2004119

Signature Date

Owner's Operation and Maintenance Plan Statement

	Hennepin PS Ash Surface Impoundment			
t, James G. Dodson	, owner of			dam,
Dam Identification Number	IL 50363	in	Putnam	County,
have reviewed the operation and	t maintenance plan in	cluding the E	mergency Actio	n Plan (EAP),
which is part of, Pennit Number	DS2004119	·	· · .	

have enclosed the appropriate revisions or.

· 1

× have determined that no revisions to the plan are necessary.

Signature

The Dependent of Naviural Resources is requesting information that is necessary to accomption the tablety purpose as optimed to defer the River, takes and Birganna Act, 815 ACS 5. Submitted to a Information to REQUIRED. Fabore to provide the required information could republik the installant of non-comptience appendices as cull and in Section 3702.350 of the "Rules for Construction and Maingtonnes of Denas".
El Close Window

Tracking Detail

Your package has been delivered.

Tracking Number:	1Z V9W 975 03 4525 747 6
Туре:	Package
Status:	Delivered
Delivered on:	12/13/2006 9:51 A.M.
Signed by:	PATTERSON
Location:	MAIL ROOM
Delivered to:	US
Shipped or Billed on:	12/12/2006
Service Type:	GROUND
Weight:	1.00 0.6
-	

Package Progress

Location	Date	Local Time	Description
SPRINGFIELD, IL, US	12/13/2006	9:51 A.M.	DELIVERY
	12/13/2006	5:01 A.M.	OUT FOR DELIVERY
	12/13/2006	4:05 A.M.	ARRIVAL SCAN
DECATUR, IL, US	12/13/2006	1:26 A.M.	DEPARTURE SCAN
DECATUR, IL, US	12/12/2006	10:08 P.M.	ARRIVAL SCAN
	12/12/2005	8:30 P.M.	DEPARTURE SCAN
	12/12/2006	6:58 P.M.	ORIGIN SCAN
US	12/12/2006	2:52 P.M.	BILLING INFORMATION RECEIVED

Tracking results provided by UPS: 12/13/2006 [3:26 P.M. EST (USA)

NOTICE: UPS authorizes you to use UPS tracking systems solely to track shipments tendered by or for you to UPS for delivery and for no other purpose. Any other use of UPS tracking systems and information is strictly prohibited.

LICIose Window

Copyright @ 1994-2005 United Parcel Service of America, Inc. All rights reserved.

Electronic Filing PReserved Ceneration 12/12/06 01:52 PM

Pickup Date: 12/12/06 Pickup Record No.: 2819375 39 2

UPS Account No.: V9W975 Sorted By:Order of Shipment

Name/Address	Shipment Detail		Options	Ref Cha	erence Rate arges	
Ship To: Jamés Eiseman Bluegrass Generation 3095 Commerce Parkway LA GRANGE KY 40031-8799	Service Type: Total Packages: Hundredweight: Billable Wt.: Billing Option:	UPS NEXT DAY AIR 1 No LTR Prepaid	Shipment Service Charge:	Ş	17.28	
	Tracking No.: Package Type:	1ZV9W975014536004 UPS Letter	5 Package Service Charge: Shipper Amt: UPS Total Charge*:	\$ \$ \$	17.28 17.28 17.28	
Ship To: Deirdre K. Hirner IL Environmental Regulatory Group 3150 Roland Ave. SPRINGFIELD IL 62703	Service Type: Total Packages: Hundredweight: Billable Wf.: Billing Option:	UPS GROUND 1 No 1.0 Prepaid	Shipment Service Charge:	\$	3.93	
	Tracking No.: Package Type: Weight:	12V9W9750343581655 Package 1.0	Package Service Charge: Shipper Ant: UPS Total Charge*:	\$ \$ \$	3.93 3. 9 3 3.93	
Ship To; Julic Armitage IL Environmental Protection Agency Bureau of Air 1021 North Grand Ave., East SPRINGFIELD IL 62794-9276	Service Type: Total Packages. Hundredweight: Billable Wt.: Billing Option:	UPS GROUND 1 No 1.0 Prepaid	Shipment Service Charge:	Ş	3.93	_
	Tracking No.: Package Type: Weight:	1ZV9W9750344879467 Package 1.D	Package Service Charge: Shipper Amt: UPS Total Charge*:	\$ 5 \$	3.93 3.93 3.93	·
Ship To: Mr. Mike Diedrichsen Illinois Dept. of Natural Resources Office of Water Resources Division of Water Resources Mgtmnt One Natural Resources Way SPRINGFIELD II, 62702-1270	Service Type: Total Packages: Hundredweight: Billable Wt.: Billing Option;	UPS GROUND 1 No 1.0 Prepaid	Shipment Service Charge.	\$	3.93	
	—: Tracking No.: Package Type; Weight:	1Zv9W9760345257476 Package 1.0	Package Service Charge: Shipper Amt: UPS Total Charge*:	5 \$ \$	3.93 3.93 3.93	
Ship To: Fiscal Secs Section, Receipts #2 JL Environmental Protection Agency 1021 North Grand Ave., East SPRINGFIELD IL 62794-9276	Service Type: Total Packages: Hundredweight: Billable W1: Billing Option:	UPS GROUND 1 No 1.0 Prepaid	Shipment Service Charge:	\$	3.93	
	Tracking No.: Package Type: Weight:	1ZV9W9750345399680 Package 1.0	Package Service Charge: Shipper Amt: UPS Total Charge*:	\$ \$ \$	3.93 3.93 3.93	
Ship To: Dynegy Midwest Generation 22228 Network Place CHICAGO IL 60673-1222	Service Typo: Total Packages: Hundredweight: Billable W1.: Billing Option:	UPS GROUND 1 No 1.0 Prepaid	Shipment Service Charge:	\$	4.02	
	Tracking No.: Package Type: Weight:	1ZV9W9750345270005 Package 1.0	Packago Service Charge: Shipper Amt; UPS Total Charge*:	\$ 5 5	4.02 4.02 4.02	

bc: J.G.Dodson, w/o att – Hennepin Station J.P.Augspols w/att. - Hennepin Station T_J_Davis/Hennepin PS Dam Inspection Reports, w/att., Decatur Rick Diericx Reading File - Decatur

. 1

Electronic Filing: Received, Clerk's Office 08/27/2020

Dam Inspection Report

Name of Dam Hennepin PS, East Ast	Surface Impoundment Dam ID No. 11 50363
Permit Number DS2004119	Class of DamIII
LocationNE 1/4 Section 26 To	vnship 33N Range 2W of 3rd PM
Owner Dynegy Midwest Ge	eration 815-339-9210
Name	Telephone Number (Day)
RR1, Box 200 AA	815-339-9215
Street	Telephone Number (Night)
Hennepin, IL 61327	County Putnam
City Zip Code	
Type of Dam Homogeneous Earth	Dam with clay and geosynthetic/clay liner
Type of Spillway Drop structure a	d stop logs
Date(s) Inspected March 29, 2010	
Weather When Inspected Sunny	
Temperature When Inspected 60	degrees F
Pool Elevation When Inspected_	Primary 481.5, Secondary 479.6
Tailwater Elevation When Inspec	ed NA
and the second s	Inspection Personnel:
0062-051918	Kenneth M Berry, P.E. Sr Proj Engr (URS) Name Title
HEGISAERED Dew K	Phil L. Morris, P.E. Environmental Professional Name Title
THE OF ILLING STATES 24 2017	John Augspols Plant Engineer Name Title

The Department of Natural Resources is requesting information that is necessary to accomplish the statutory purpose as outlined under the River, Lakes and Streams Act, 615 ILCS 5. Submittal of this information is REQUIRED. Failure to provide the required information could result in the initiation of non-compliance procedures as outlined in Section 3702,160 of the "Rules for Construction and Maintenance of Dams."

CONDITION CODES

- NE No evidence of a problem
- GC Good condition
- MM Item needing minor maintenance and/or repairs within the year, the safety or integrity of the item is not yet imperiled
- IM Item needing immediate maintenance to restore or ensure its safety or integrity
- EC Emergency condition which if not immediately repaired or other appropriate measures taken could lead to failure of the dam
- OB Condition requires regular observation to ensure that the condition does not become worse
- NA Not applicable to this dam
- NI Not inspected -list the reason for non-inspection under deficiencies

All Condition Codes will be listed with the following abbreviations:

P = Primary Cell

S = Secondary (polishing) Cell

Electronic Filing: Received, Clerk's Office 08/27/2020

EARTH EMBANKMENT

RECOMMENDED REMEDIAL MEASURES AND IMPLEMENTATION SCHEDULE							
DEFICIENCIES	NA	NA	NA				
CONDITION CODE	Ш <mark>Х</mark>	CC	ЯЕ	AN	A	ΨZ	Ϋ́
ITEM	Animal Damage	Embankment Drainage Ditches	Vegetative Cover	Other (Name)	Other –	Other -	Other

EARTH EMBANKMENT (Continued)

DAMS
ASONRY
E OR M/
CONCRET

ITEM	CONDITION	DEFICIENCIES	RECOMMENDED REMEDIAL MEASURES AND IMPLEMENTATION SCHEDULE
Seepage	AN		
Structure to Abutment! Embankment Junctions	AN		
Water Passages	AN		
Foundation	Ϋ́		
Surface Cracks in Concrete Surfaces	Ϋ́Α		
Structural Cracking	ΥA		
Vertical and Horizontal Alignment	NA		

CONCRETE OR MASONARY DAMS (CONTINUED)

ITEM	CONDITION CODE	DEFICIENCIES	RECOMMENDED REMEDIAL MEASURES AND IMPLEMENTATION SCHEDULE
Monolith Joints	AN		
Contruction Joints	¥Д		
Spalling of Concrete	ΨZ		
Filters; Drains, etc.	AN		
Riprap	A		
Other (Name)	۲ Z		

IF THE DAM IS GATED - Fill out the portion of the Principal Spillway Form related to Gated Spillways

PRINCIPAL SPILLWAY APPROACH CHANNEL

ITEM	CONDITION CODE	DEFICIENCIES	RECOMMENDED REMEDIAL MEASURES AND IMPLEMENTATION SCHEDULE
Debris	ΨN		
Side Slope Stability	A		
Slope Protection	AN		
Other (Name)	Ą		
Other	Ą		
Other	A		
Other	Ą		

PRINCIPAL SPILLWAY

x Drop Inlet Spillway

Overflow Spillway Structure

□ Gated

ITEM	CONDITION	DEFICIENCIES	RECOMMENDED REMEDIAL MEASURES AND IMPLEMENTATION SCHEDULE
	NE	NA	
Erosion, Spalling, Cavitation			
Structure to Embankment Junction	Z	Underwater	
Drains	AN	AA	
Seepage Around or Into Structure	Z	Underwater	
Surface Cracks	Z	Underwater	
Structural Cracks	Z	Underwater	
IF THE SPILLWAY IS GATED FILL (OUT THE SPILLM	VAY SECTION	

X Dr	op Inlet Spillwa	ay 🛛 🗍 Overflow Spillwa	ay Structure
ITEM	CONDITION CODE	DEFICIENCIES	RECOMMENDED REMEDIAL MEASURES AND IMPLEMENTATION SCHEDULE
Alignment of Abutment Walls	AN	NA	
Construction Joints	Ϋ́	AN	
Filter and Filter Drains	ΥN	NA	
	ν	NA·	
Trash Racks			
Bridge and Piers	Ш N	AN	
	NE		
Differential Settlement		NA	
Other (Name)	AN	AA	
IF THE SPILLWAY IS GATED FI	ILL OUT THE GA	TES SECTION	

IF THE SPILLWAY IS GATED FILL OUT THE GATES SECTION

RECOMMENDED REMEDIAL MEASURES AND IMPLEMENTATION SCHEDULE DEFICIENCIES CONDITION CODE ΨN AN NΑ ΡN ٩N ٩N ΥN ٩Z Υ Erosion, Spalling, Cavitation Expansion and Contraction Structure to Embankment Junction Differential Settlement **Construction Joints** Structural Cracks Surface Cracks Wall Alignment Other (Name) □ Chute Joints ITEM

IF THE SPILLWAY IS GATED FILL OUT THE GATES SECTION

PRINCIPAL SPILLWAY

Cth

Electronic Filing: Received, Clerk's Office 08/27/2020

OUTLET WORKS IF SEPARATE FROM PRINCIPAL SPILLWAY STRUCTURE

ITEM	CONDITION CODE'	DEFICIENCIES	RECOMMENDED REMEDIAL MEASURES AND IMPLEMENTATION SCHEDULE
Erosion. Spalling, Cavitation	AA		
Joint Separation	AN		
Seepage Around or Into Conduit	AN		
Intake Structure	AN		
Outlet Structure	AN		
Outlet Channel	AN		
Riprap	ΨN		
Other (Name)	AN		
Other	AN		

ENERGY DISSIPATOR

Principal Spillway

x Outlet Works

Type:			
ITEM	CONDITION	DEFICIENCIES	RECOMMENDED REMEDIAL MEASURES AND IMPLEMENTATION SCHEDULE
Erosion, Spalling, Cavitation	Ч	NA	
Structure to Embankment Junction	۳	NA	
Construction Joints	B	NA	
Surface Cracks	Ш	NA	
Structural Cracks	Z	Underwater	
Differential Alignment	ШХ	NA	
Expansion and Contraction Joints	Z	Underwater	

Electronic Filing: Received, Clerk's Office 08/27/2020

ENERGY DISSIPATOR (Continued)

Principal Spillway

Outlet Works

TEM	CONDITION CODE	DEFICIENCIES	RECOMMENDED REMEDIAL MEASURES AND IMPLEMENTATION SCHEDULE
Riprap	Ш Z	NA	
Outlet Channel	Ш И	NA	
Debris	Ш	NA	
Other (Name)	AN		
Other	NA		
Other	ΡN		
Other	AN		

ITEM	CONDITION	DEFICIENCIES	RECOMMENDED REMEDIAL MEASURES AND IMPLEMENTATION SCHEDULE
Erosion	NA		
Weeds, Logs. Other Obstructions	NA		
Side Slope Sloughing	NA		
Vegetation	NA		
Sedimentation	NA		
Riprap	NA	1	
Settlement of Crest	NA		
Downstream Channel	NA		
Other (Name)	NA		

EMERGENCY SPILLWAY

Electronic Filing: Received, Clerk's Office 08/27/2020

Electronic Filing: Received, Clerk's Office 08/27/2020

SUMMARY OF MAINTENANCE DONE AND/OR

REPAIRS MADE SINCE THE LAST INSPECTION.

DATE OF PRESENT INSPECTION _____ March 29, 2010 _____

DATE OF LAST INSPECTION _____ March 19, 2009

1. EARTH EMBANKMENT DAMS

Minor erosion repairs, mowing, tree cutting, and general maintenance have been performed.

2. CONCRETE MASONARY DAMS

3. PRINCIPAL SPILLWAY

4. OUTLET WORKS

5. EMERGENCY SPILLWAY

Electronic Filing: Received, Clerk's Office 08/27/2020

MILES WNSTREAM	ОССЛЫЕВ НОМЕЯ	14	0 1/2	0 3/4	0.1	1 1/4	to 1 ½	to 1 ¾	to 2	ER 2
DOWNSTREA	UNOCCUPIED HOMES	0								
		0								
		0								
		0								
VM DE										
VELC										
PME		0								
Ļ	OVERHEAD UTILITIES	0						ļ		
	OTHER DEVELOPMENT (Name)	0		 						
	OTHER DEVELOPMENT (Name)	0								
٦ Ľ	BNON	×		<u> </u>			ļ	<u> </u>	ļ	
ss Of otenti	01 OT 1				ļ			ļ		
Life ial	OVER 10			 		 	 	<u> </u>		
ы Цара	MINIMAL EXPECTED	×								
onom Loss otentia	АРРЯЕСІАВLЕ ЕХРЕСТЕD									
<u> </u>	EXCESSIVE EXPRECTED									
SKETCH IN DEVELOPMENT DOWNSTREAM OF THE DAI										

MILES. 0.25 APPROXIMATE WIDTH OF AFFECTED FLOODPLAIN DOWNSTREAM DEVELOPMENT

Electronic Filing: Received, Clerk's Office 08/27/2020

Electronic Filing: Received, Clerk's Office 08/27/2020

Owner's Maintenance Statement

I, <u>Ted Lindenbusch</u>, owner of <u>Hennepin PS East Ash Surface Impoundment</u> dam, Dam Identification Number <u>IL 50363</u>, in <u>Putnam</u> County, am maintaining the dam in accordance with the accepted maintenance plan which is part of Permit Number <u>DS2004119</u>

Signature

Date

Owner's Operation and Maintenance Plan Statement

I, Ted Lindenbusch, owner of Hennepin PS East Ash Surface Impoundment dam,

Dam Identification Number <u>IL 50363</u>, in <u>Putnam</u> County,

have reviewed the operation and maintenance plan including the Emergency

Action Plan (EAP), which is part of Permit Number <u>DS2004119</u>

I have enclosed the appropriate revisions or

have determined that no revisions to the plan are necessary.

Signature

Date

The Department of Natural Resources is requesting information that is necessary to accomplish the statutory purposes as outlined under the River, Lakes and Streams Act, 615 IL CS 5. Submetal of this information is REQUIRED. Failure to provide the required information ocuto result in the initiation on non-compliance procedures as outlined in Section 3702 160 of the "Rules for Construction and Maintenance of Dams."

Electronic Filing: Received, Clerk's Office 08/27/2020

Dam mapeution hepot

Name of Dam Hennepin PS, West A	sh Surface Impoundme	ent_Dam ID No. N/A
Permit Number N/A	Class of Dam	N/A
LocationNE _ Section _ Towns	hip Range	_
Owner Dynegy Midwest Ge Name	eneration 815 Tel	-339-9210 ephone Number (Day)
RR1, Box 200 AA	815	-339-9215
Street	Tel	ephone Number (Night)
Hennepin, IL 61327 City Zip Code	Co	unty Putnam
Type of Dam Homogeneous Earth	h Dam	
Type of Spillway Drop structure		
Date(s) Inspected March 29, 201	0	
Weather When Inspected Sunny		
Temperature When Inspected 60	0 degrees F	
Pool Elevation When Inspected	Unknown	
Tailwater Elevation When Inspec	sted NA	
summing.	Inspection Perso	nnel:
A MORROE SCH	Kenneth M Berry,	P.E. Sr Proj Engr (URS)
0062-051918 Th	Name	The
ACOFESSIONAL DOLLANY	Phil L. Morris, P.E Name	Environmental Professional Title
111101111 5 26(2010	John Augspols	Plant Engineer
	Name	Title

The Department of Natural Resources is requesting information that is necessary to accomplish the statutory purpose as outlined under the Rover, Lakes and Streams Act. 615 LCS 5, Submittal of this information is REQUIRED. Failure to provide the required information could result in the initiation of non-compliance procedures as outlined in Section 3702,160 of the "Rules for Construction and Maintenance of Dams.

CONDITION CODES

- NE No evidence of a problem
- GC Good condition
- MM Item needing minor maintenance and/or repairs within the year, the safety or integrity of the item is not yet imperiled
- IM Item needing immediate maintenance to restore or ensure its safety or integrity
- EC Emergency condition which if not immediately repaired or other appropriate measures taken could lead to failure of the dam
- OB Condition requires regular observation to ensure that the condition does not become worse
- NA Not applicable to this dam
- NI Not inspected -list the reason for non-inspection under deficiencies

ITEM	CONDITION CODE	DEFICIENCIES	RECOMMENDED REMEDIAL MEASURES AND IMPLEMENTATION SCHEDULE
	NE	NA	
acks			
l Horizontal of Crest	ပ္ပ	AN	
ovement or Cracking ⁻ nd Toe	N	Underwater	
or Erosion of ent and Abutment	OB/MM	Vegetation was high and thick – limited ability to observe.	Sporadic riverbank erosion observed towards the south. Recommend placement of rip rap to repair.
Face Slope	OB	Vegetation was high and thick, so not able to observe.	Cut vegetation and observe.
	Ш N	Mostly underwater	
-ilter Drains	AN	AN	

EARTH EMBANKMENT

ITEM	CONDITION	DEFICIENCIES	RECOMMENDED REMEDIAL MEASURES AND IMPLEMENTATION SCHEDULE
Animal Damage	NE	NA	
Embankment Drainage Ditches	ВN	NA	
Vegetative Cover	MM	High vegetation and Sporadic trees	Cut vegetation on interior to facilitate inspection and limit roots. Do not cut trees on river bank since they provide erosion protection from the river.
Other (Name)	NA		
Other	NA		
Other -	NA		
Other	AN		

EARTH EMBANKMENT (Continued)

S
5
5
4
\sim
Z
ĭο.
2
2
~
뜨
O
2
Щ
<u>m</u>
O
5
2
0
-

ITEM	CONDITION CODE	DEFICIENCIES	RECOMMENDED REMEDIAL MEASURES AND IMPLEMENTATION SCHEDULE
Seepage	RA		
Structure to Abutment! Embankment Junctions	AA		
Water Passages	NA		
Foundation	NA		
Surface Cracks in Concrete Surfaces	ΨN		
Structural Cracking	AN		
Vertical and Horizontal Alignment	Ϋ́		

CONCRETE OR MASONARY DAMS (CONTINUED)

ITEM	CONDITION CODE	DEFICIENCIES	RECOMMENDED REMEDIAL MEASURES AND IMPLEMENTATION SCHEDULE
Monolith Joints	A		
Contruction Joints	AN		
Spalling of Concrete	ΨN		
Filters; Drains, etc.	Ϋ́		
Riprap	ΥN		
Other (Name)	۲		

IF THE DAM IS GATED - Fill out the portion of the Principal Spillway Form related to Gated Spillways

PRINCIPAL SPILLWAY APPROACH CHANNEL

ITEM	CONDITION CODE	DEFICIENCIES	RECOMMENDED REMEDIAL MEASURES AND IMPLEMENTATION SCHEDULE
Debris	ΨN		
Side Slope Stability	ΨN		
Slope Protection	ΨN		
Other (Name)	ΨN		
Other	AN		
Other	AN		
Other	ΨN		

PRINCIPAL SPILLWAY

X Drc	op Inlet Spillwa	ay 🛛 🗍 Overflow Spillw	/ay Structure 🛛 🔲 Gated
ITEM	CONDITION CODE	DEFICIENCIES	RECOMMENDED REMEDIAL MEASURES AND IMPLEMENTATION SCHEDULE
Erosion, Spalling, Cavitation	Z	High vegetation	
Structure to Embankment Junction	Z	High vegetation	
Drains	AN	NA	
Seepage Around or Into Structure	Z	High vegetation	
Surface Cracks	Z	High vegetation	
Structural Cracks	Z	High vegetation	
IF THE SPILLWAY IS GATED FILL C	OUT THE SPILLM	AY SECTION	

x Drop Inlet Spillway
Continued)
Overflow Spillway Structure

Gated

ITEM	CONDITION CODE	DEFICIENCIES	RECOMMENDED REMEDIAL MEASURES AND IMPLEMENTATION SCHEDULE
Alignment of Abutment Walls	ΨN	NA	
Construction Joints	NA	NA	
Filter and Filter Drains	NA	NA	
Trash Racks	NA	NA·	
Bridge and Piers	NA	AA	
Differential Settlement	NA	NA	
Other (Name)	NA	NA	

t Gated	CONDITION RECOMMENDED REMEDIAL MEASURES AND CODE DEFICIENCIES IMPLEMENTATION SCHEDULE	NI Inaccessible	NI Inaccessible	NI Inaccessible	NI Inaccessible	NI Inaccessible	NA	NI Inaccessible	NI Inaccessible	NA NA
x Conduit	ITEM	Erosion, Spalling, Cavitation	Joint Separation	Seepage Around of Into Conduit	Surface Cracks	Structural Cracks	Trash Racks	Differential Settlement	Alignment	Other (Name)

IF THE SPILLWAY IS GATED FILL OUT THE GATES SECTION

RECOMMENDED REMEDIAL MEASURES AND IMPLEMENTATION SCHEDULE DEFICIENCIES CONDITION CODE AN AN AN Ν AN ΝA ٩V ¥ ΥZ Erosion, Spalling, Cavitation Expansion and Contraction Joints Structure to Embankment Junction Differential Settlement Construction Joints Structural Cracks Surface Cracks Wall Alignment Other (Name) □ Chute ITEM

	MENDED REMEDIAL MEASURES AND IMPLEMENTATION JLE							
Other:	DEFICIENCIES SCHEDU							
☐ Dewatering	CONDITION CODE	AN	AN	AN	AN	AN	AN	AN
Principal Spillway	ITEM	Gate Sill	Gate Seals	Gate and Frame	Operating Machinery	Emergency Operating Machinery	Other (Name)	Other

PRINCIPAL SPILLWAY

OUTLET WORKS IF SEPARATE FROM PRINCIPAL SPILLWAY STRUCTURE

ITEM	CONDITION CODE'	DEFICIENCIES	RECOMMENDED REMEDIAL MEASURES AND IMPLEMENTATION SCHEDULE
Erosion. Spalling, Cavitation	AN		
Joint Separation	AN		
Seepage Around or Into Conduit	ΨN		
Intake Structure	ΨN		
Outlet Structure	AN		
Outlet Channel	Ϋ́		
Riprap	ΨN		
Other (Name)	AN		
Other	ΥN		
	-		
----	---		
2	L		
0	L		
Ē	L		
4	L		
Δ.	L		
	L		
တ	L		
S	L		
	L		
Ω	L		
~	L		
	L		
G	L		
Ñ			
	L		
ш			
7	L		
	L		
ш			

Principal Spillway

Outlet Works

Type:			
ITEM	CONDITION	DEFICIENCIES	RECOMMENDED REMEDIAL MEASURES AND IMPLEMENTATION SCHEDULE
Erosion, Spalling, Cavitation	AN		
Structure to Embankment Junction	AA		
Construction Joints	AN		
Surface Cracks	NA		
Structural Cracks	AN		
Differential Alignment	NA		
Expansion and Contraction Joints	AN		

Electronic Filing: Received, Clerk's Office 08/27/2020

ENERGY DISSIPATOR (Continued)

Principal Spillway

Outlet Works

ITEM	CONDITION CODE	DEFICIENCIES	RECOMMENDED REMEDIAL MEASURES AND IMPLEMENTATION SCHEDULE
Riprap	AN		
Outlet Channel	AN		
Debris	ΨN		
Other (Name)	Ϋ		
Other	ΨN		
Other	AN		
Other	ΥN		

EMERGENCY SPILLWAY

□ Other: Name _

Earth

Item CODETION DEFICIENCIES RECOMMENDED R Erosion NA BEFICIENCIES IMPLEMENTATION Weeds, Logs. Other NA NA ImpLementations Weeds, Logs. Other NA NA ImpLementations Side Slope Sloughing NA NA NA Vegetation NA NA ImpLementation Vegetation NA NA ImpLementation Side Slope Sloughing NA NA ImpLementation Vegetation NA NA ImpLementation ImpLementation Storage NA NA ImpLementation ImpLementation ImpLementation Cher (Name) MA NA ImpLementation ImpLementation				
Erosion NA Erosion NA Weeds, Logs. Other NA Obstructions NA Side Stope Stoughing NA Side Stope Stoughing NA Vegetation NA Vegetation NA Vegetation NA Vegetation NA Vegetation NA Sedimentation NA Sedimentation NA Etiprap NA Settlement of Crest NA Downstream Channel NA Downstream Channel NA Other (Name) NA	ITEM	CONDITION	DEFICIENCIES	RECOMMENDED REMEDIAL MEASURES AND IMPLEMENTATION SCHEDULE
Weeds, Logs. OtherNAObstructionsNAObstructionsNASide Slope SloughingNAVegetationNAVegetationNAVegetationNAVegetationNASedimentationNARiprapNARiprapNASettlement of CrestNADownstream ChannelNAOther (Name)NA	Erosion	ΨZ		
NA NA Side Slope Sloughing NA Vegetation NA Vegetation NA Sedimentation NA Sedimentation NA Setimentation NA Setimentation NA Charlen NA Setimentation NA Charlen NA Settlement of Crest NA Downstream Channel NA Other (Name) NA	Weeds, Logs. Other Obstructions	AN		
VegetationNAVegetationNASedimentationNARiprapNARiprapNASettlement of CrestNADownstream ChannelNAOther (Name)NA	Side Slope Sloughing	AN		
NA NA Sedimentation NA Riprap NA Settlement of Crest NA Downstream Channel NA Downstream Channel NA Other (Name) NA	Vegetation	ΨN		
Riprap NA Settlement of Crest NA Settlement of Crest NA Downstream Channel NA Other (Name) NA	Sedimentation	AN		
Settlement of Crest NA Settlement of Crest NA Downstream Channel Other (Name) Other (Name)	Riprap	AN		
Downstream Channel NA Downstream Channel NA Other (Name)	Settlement of Crest	AN		
Other (Name) NA	Downstream Channel	AN		
	Other (Name)	AM		

Electronic Filing: Received, Clerk's Office 08/27/2020

SUMMARY OF MAINTENANCE DONE AND/OR

REPAIRS MADE SINCE THE LAST INSPECTION.

DATE OF PRESENT INSPECTION _____March 29, 2010

DATE OF LAST INSPECTION ______ March 19, 2009

1. EARTH EMBANKMENT DAMS

Unknown.

2. CONCRETE MASONARY DAMS

3. PRINCIPAL SPILLWAY

4. OUTLET WORKS

5. EMERGENCY SPILLWAY

1 1 2
LED CLED NI (Name) NI (Name) S NINGS NIGS S S S S S S S S S S S S S S S S S S

0 25 DOWNSTREAM DEVELOPMENT

Electronic Filing: Received, Clerk's Office 08/27/2020

Owner's Maintenance Statement

I, Ted Lindenbusch, owner of Hennepin PS West Ash Surface Impoundment dam,

Dam Identification Number _____, in ____ Putnam ____ County,

am maintaining the dam in accordance with the accepted maintenance plan

which is part of Permit Number _____.

Signature

Date

Owner's Operation and Maintenance Plan Statement

I, Ted Lindenbusch, owner of Hennepin PS West Ash Surface Impoundment dam,

Dam Identification Number _____, in Putnam County,

have reviewed the operation and maintenance plan including the Emergency

Action Plan (EAP), which is part of Permit Number______.

I have enclosed the appropriate revisions or

have determined that no revisions to the plan are necessary.

Signature

Date

The Department of Natural Resources is requesting information that is necessary to accomplish the statutory purposes as outlined under the River, Lakes and Streams Act, 615 IL CS 5. Submittal of this information is REQUIRED. Failure to provide the required information could result in the initiation on non-compliance procedures as outlined in Section 3702, 169 of the 'Rules for Construction and Maintenance of Dams."

Electronic Filing: Received, Clerk's Office 08/27/2020

APPENDIX E

PHOTOGRAPHS

West

Photo No.Date:285/23/11Direction PhotoTaken:Northeast

Description: Crest of the 1978 embankment and downstream slope of the 1995 embankment along the EAPS.

Direction Photo Taken: Northeast

Description: Crest and upstream slope of the EAPS.

Direction Photo Taken: Southwest

Description: Crest and upstream slope of the Secondary Cell.

East

Description: Upstream slope of the Primary Cell.

50 5/23/11 Direction Photo Taken: Southwest

Description: Crest and upstream slope of the Primary Cell.

EAPS.

Discharge pipe into the Primary Cell near the northeast corner.

Southeast

Description: Discharge pipe from the Primary Cell to Pond 2E.

APPENDIX F

REFERENCES

REFERENCE LIST HENNEPIN POWER STATION

Civil & Environmental Consultants, Inc. "Application for a Permit to Construct a New Leachate and Storm Water Runoff Collection Pond, Dynegy-Hennepin Power Station Hennepin, Illinois". Date July 2009.

Civil & Environmental Consultants, Inc. "Pond 2 East Construction Completion Report, Hennepin Power Station, Hennepin, Putnam County, Illinois". Date December 2010.

Sargent & Lundy Engineers. "Roadways at Plant Site, General Location Plan, Hennepin, Power Station, Illinois Power Company, Hennepin, Illinois," Drawing No.B-9. Dated March 27, 1953.

Sargent & Lundy Engineers. "Roadways at Plant Site, General Location Plan, Hennepin, Power Station, Illinois Power Company, Hennepin, Illinois," Drawing No.B-11. Dated March 27, 1953.

Illinois Power Company. "Hennepin Power Station Ash Surface Impoundment Hydrologic/Hydraulic Analysis" Dated September 1994.

Illinois Power Company. "Hennepin Power Station Ash Surface Impoundment Geotechnical/Structural Design" Dated September 1994.

Illinois Power Company, Decatur. "West Ash Pond Topographic Survey, Hennepin Power Station." Drawing No. E-HEN1-B451. Dated September 29, 1987.

Illinois Power Company, Decatur. "Cross Sections of Ash Pond Berm Extension" Hennepin Station." Drawing No. E-HEN1-B452. Dated December 30, 1987.

Illinois Power Company, Decatur. "Cross Sections of Ash Pond Berm Extension" Hennepin Station." Drawing No. E-HENI-B453. Dated December 30, 1987.

Illinois Power Company, Decatur. "Cross Sections of Ash Pond Berm Extension" Hennepin Station." Drawing No. E-HEN1-B454. Dated December 30, 1987.

Illinois Power Company, Decatur. "Cross Sections of Ash Pond Berm Extension" Hennepin Station." Drawing No. E-HEN1-B455. Dated December 30, 1987.

Illinois Power Company, Decatur. "Cross Sections of Ash Pond Berm Extension" Hennepin Station." Drawing No. E-HEN1-B456. Dated December 30, 1987.

Illinois Power Company, Decatur. "Cross Sections of Ash Pond Berm Extension" Hennepin Station." Drawing No. E-HEN1-B457. Dated December 30, 1987.

Illinois Power Company, Decatur. "Cross Sections, East Ash Pond Extension" Hennepin Station." Drawing No. CE-HEN1-B458-1. Dated January 11, 1989.

Illinois Power Company, Decatur. "Cross Sections, East Ash Pond Extension" Hennepin Station." Drawing No. CE-HEN1-B458-2. Dated January 12, 1989.

Illinois Power Company, Decatur. "Cross Sections, East Ash Pond Extension" Hennepin Station." Drawing No. CE-HEN1-B458-3. Dated January 12, 1989.

Illinois Power Company, Decatur. "Cross Sections, East Ash Pond Extension" Hennepin Station." Drawing No. CE-HEN1-B458-4. Dated January 12, 1989.

Illinois Power Company, Decatur. "Cross Sections, East Ash Pond Extension" Hennepin Station." Drawing No. CE-HEN1-B458-5. Dated January 12, 1989.

Illinois Power Company, Decatur. "Cross Sections, East Ash Pond Extension" Hennepin Station." Drawing No. CE-HEN1-B458-6. Dated January 12, 1989.

Illinois Power Company, Decatur. "Cross Sections, East Ash Pond Extension" Hennepin Station." Drawing No. CE-HEN1-B458-7. Dated January 12, 1989.

Illinois Power Company, Decatur. "East Ash Pond Topographic Survey, Hennepin Power Station." Drawing No. E-HEN1-B450. Dated September 27. 1987.

Illinois Power Company, Decatur. "Area Site Plan, Hennepin Power Station." Drawing No. CE-HEN1-C4. Dated January 10, 1994.

Illinois Power Company, Decatur. "Survey Plan Ash Impoundment", Hennepin Station." Drawing No. CE-HEN1-C5.1. Dated September 20 1994.

Illinois Power Company, Decatur. "Survey Plan Ash Impoundment", Hennepin Station." Drawing No. CE-HEN1-C5.2. Dated September 20 1994.

Illinois Power Company, Decatur. "Survey Plan Ash Impoundment", Hennepin Station." Drawing No. CE-HEN1-C5.3. Dated September 20 1994.

Illinois Power Company, Decatur. "Cross Sections, 1995 Ash Facility", Hennepin Station." Drawing No. CE-HEN1-C7-1. Dated October 12, 1993.

Illinois Power Company, Decatur. "Plan and Ash Pond Cross Section, Proposed Ash Facility", Hennepin Station." Drawing No. CE-HEN1-C7.9. Dated October 5, 1994.

Illinois Power Company, Decatur. "Plan and Ash Pond Cross Section, Proposed Ash Facility", Hennepin Station." Drawing No. CE-HEN1-C7.10. Dated October 5, 1994.

Illinois Power Company, Decatur. "Plan and Ash Pond Cross Section, Proposed Ash Facility", Hennepin Station." Drawing No. CE-HEN1-C7.12. Dated July 21, 1994.

Illinois Power Company, Decatur. "Plan and Ash Pond Cross Section, Proposed Ash Facility", Hennepin Station." Drawing No. CE-HEN1-C7.12A. Dated July 24, 1994.

Illinois Power Company, Decatur. "Plan and Ash Pond Cross Section, Proposed Ash Facility", Hennepin Station." Drawing No. CE-HEN1-C7.12B. Dated July 24, 1994.

Illinois Power Company, Decatur. "Plan and Ash Pond Cross Section, Proposed Ash Facility", Hennepin Station." Drawing No. CE-HEN1-C7.15. Dated October 10, 1993.

Illinois Power Company, Decatur. "Plan and Ash Pond Cross Section, Proposed Ash Facility", Hennepin Station." Drawing No. CE-HEN1-C7.16. Dated October 12, 1993.

Illinois Power Company, Decatur. "Plan and Ash Pond Cross Section, Proposed Ash Facility", Hennepin Station." Drawing No. CE-HEN1-C7.17. Dated October 12, 1993.

Illinois Power Company, Decatur. "Plan and Ash Pond Cross Section, Proposed Ash Facility", Hennepin Station." Drawing No. CE-HEN1-C7.18. Dated October 12, 1993.

Dynegy Midwest Generation, LLC . "Hennepin Revised Stability Analysis for Section P2-1"; Email correspondence from Mr. Phil Morris. Dated October 22, 2012.

PREFACE

The assessment of the general condition of the dams/impoundment structures reported herein was based upon available data and visual inspections. Detailed investigations and analyses involving topographic mapping, subsurface investigations, testing and detailed computational evaluations were beyond the scope of this report.

In reviewing this report, it should be realized that the reported condition of the dams and/or impoundment structures was based on observations of field conditions at the time of inspection, along with data available to the inspection team. In cases where an impoundment is lowered or drained prior to inspection, such action, while improving the stability and safety of the dam, removes the normal load on the structure and may obscure certain conditions, which might otherwise be detectable if inspected under the normal operating environment of the structure.

It is critical to note that the condition of the dam and/or impoundment structures depends on numerous and constantly changing internal and external conditions, and is evolutionary in nature. It would be incorrect to assume that the reported condition of the dam will continue to represent the condition of the dam at some point in the future. Only through continued care and inspection can there be any chance that unsafe conditions be detected.

Prepared by:

GZA GeoEnvironmental, Inc.

Patrick Harrison, P.E.

License No.: 062.034946 Senior Geotechnical Consultant GZA GeoEnvironmental, Inc.

Drawing Name: J:\GZA_USA#\01.0170142.30 Ash Imp. Round 10\01.0170142.30 Task 8 - Hennepin\Drawings\Autocad\Scanned Figures - Hennepin.dwg Last Modified: Dec 13, 2011 - 10:53am Plotted on

The following are attachments to the testimony of Andrew Rehn.

ATTACHMENT 10a

October 2016

Dynegy Midwest Generation, LLC 13498 E 800th St. Hennepin, IL 61327

RE: History of Construction USEPA Final CCR Rule, 40 CFR § 257.73(c) Hennepin Power Station Hennepin, Illinois

On behalf of Dynegy Midwest Generation, LLC, AECOM has prepared the following history of construction for the Old West Polishing Pond, Old West Ash Pond, Ash Pond No. 2, and East Ash Pond at the Hennepin Power Station in accordance with 40 CFR § 257.73(c).

BACKGROUND

40 CFR § 257.73(c)(1) requires the owner or operator of an existing coal combustion residual (CCR) surface impoundment that either (1) has a height of five feet or more and a storage volume of 20 acre-feet or more, or (2) has a height of 20 feet or more to compile a history of construction by October 17, 2016 that contains, to the extent feasible, the information specified in 40 CFR § 257.73(c)(1)(i)–(xii).

The history of construction presented herein was compiled based on existing documentation, to the extent that it is reasonably and readily available (see 80 Fed. Reg. 21302, 21380 [April 17, 2015]), and AECOM's site experience. AECOM's document review included construction drawings, geotechnical investigations, operation and maintenance information, etc. for Old West Polishing Pond, Old West Ash Pond, Ash Pond No. 2, and East Ash Pond at the Hennepin Power Station.

HISTORY OF CONSTRUCTION

§ 257.73(c)(1)(i): The name and address of the person(s) owning or operating the CCR unit; the name associated with the CCR unit; and the identification number of the CCR unit if one has been assigned by the state.

Owner:	Dynegy Midwest Generation, LLC
Address:	1500 Eastport Plaza Drive Collinsville, IL 62234
CCR Units:	Old West Polishing Pond Old West Ash Pond (Pond No. 1 and Pond No. 3) Ash Pond No. 2 East Ash Pond, IDNR Dam ID No. IL50363

The Old West Polishing Pond, Old West Ash Pond, and Ash Pond No. 2 do not have a state assigned identification number.

§ 257.73(c)(1)(ii): The location of the CCR unit identified on the most recent USGS $7^{1}/_{2}$ or 15 minute topographic quadrangle map or a topographic map of equivalent scale if a USGS map is not available.

The locations of the Old West Polishing Pond, Old West Ash Pond, Ash Pond No. 2, and East Ash Pond have been identified on an USGS 7-1/2 minute topographic quadrangle map in **Appendix A**.

§ 257.73(c)(1)(iii): A statement of the purpose for which the CCR unit is being used.

The following captures the purpose of each CCR unit:

- The Old West Polishing Pond (inactive) was used to store and dispose fly ash and bottom ash and is currently being used to clarify stormwater runoff from the Old West Ash Pond prior to discharge in accordance with the station's NPDES permit.
- The Old West Ash Pond (inactive) was used to store and dispose fly ash and bottom ash.
- The Ash Pond No. 2 (inactive) was used to store and dispose fly ash, bottom ash, and other non-CCR waste streams including coal pile runoff.
- The East Ash Pond is being used to store and dispose bottom ash, fly ash, and other non-CCR waste and to clarify process water prior to discharge in accordance with the station's NPDES permit.

Notice of intent to close the Old West Polishing Pond, Old West Ash Pond, and Ash Pond No. 2 was provided in November 2015.¹

¹ This history of construction report was prepared on a facility-wide basis for CCR surface impoundments at the Hennepin Power Station. The inclusion of the Old West Polishing Pond, Old West Ash Pond, and Ash Pond No. 2 in this history of construction report does not concede and should not be construed to concede that the Old

§ 257.73(c)(1)(iv): The name and size in acres of the watershed where the CCR unit is located.

The Hennepin Power Station and the above-referenced CCR units are located at the western edge of the Depue Lake-Illinois River Watershed with a 12-digit Hydrologic Unit Code (HUC) of 071300010804 and a drainage area of 44,525 acres (USGS 2016).

257.73(c)(1)(v): A description of the physical and engineering properties of the foundation and abutment materials on which the CCR unit is constructed.

Physical properties of the foundation materials for the Old West Polishing Pond and Old West Ash Pond are described as cohesive material underlain by granular material. The cohesive material consists of lean clay, gravelly clay, silt, clayey silt, and sandy silt. The consistency of the cohesive material varies from very soft to medium stiff. The granular material consists of silty sand and clayey gravel. The relative density of the granular materials varies from loose to very dense and generally increases with depth. An available summary of the engineering properties of the foundation materials for the Old West Polishing Pond and Old West Ash Pond is presented in **Table 1** below. The engineering properties are based on previous geotechnical explorations and laboratory testing.

Layer	Unit Weight (pcf)	Total (undrained) Shear Strength Parameters		Effective (drained) Shear Strength Parameters	
	(p)	φ (deg)	c (psf)	φ' (deg)	c' (psf)
CL (soft)	120	0	500	28	0
CL (medium stiff gravely clay)	120	28	0	28	0
ML (soft to medium stiff)	125	28	0	28	0
CL-ML (very soft)	120	0	400	26	0
SM (very loose)	125	28	0	28	0
GC (dense)	130	34	0	34	0
GC (very dense)	130	36	0	36	0
Fill: GC (very dense)	130	34	50	34	0

Table 1. Summary of Material Engineering Properties for the Old West Polishing Pond and Old West Ash Pond

West Polishing Pond, Old West Ash Pond, and Ash Pond No. 2 are subject to the Design Criteria or all Operating Criteria in the CCR Rule.

The Old West Polishing Pond and Old West Ash Pond are enclosed impoundments with dikes and do not have abutments.

Physical properties of the foundation and abutment materials for Ash Pond No. 2 and the East Ash Pond are described as gravel materials with varying amounts of silt and clay. The relative density of the gravel is medium dense to very dense. An available summary of the engineering properties of the foundation materials for Ash Pond No. 2 and the East Ash Pond is presented in **Table 2** below. The engineering properties are based on previous geotechnical explorations and laboratory testing.

	the Ash Pon	d No. 2 and East A	Ash Pond
		Effective	Total
Material	Unit Waight	(drained) Shear	(undrained)
	(nof)	Strength	Shear Strength
	(pci)	Parameters	Parameters

c' (psf)

0

Table 2. Summary of Foundation and Abutment Material Engineering Properties forthe Ash Pond No. 2 and East Ash Pond

Φ' (°)

38

c (psf)

0

Φ(°)

38

§ 257.73(c)(1)(vi): A statement of the type, size, range, and physical and engineering properties of the materials used in constructing each zone or stage of the CCR unit; the method of site preparation and construction of each zone of the CCR unit; and the approximate dates of construction of each successive stage of construction of the CCR unit.

135

Physical properties of the embankment materials for the Old West Polishing Pond and Old West Ash Pond are described as gravel with occasional zones of clayey sand and lean clay. The gravel has a general relative density of very dense. An available summary of the engineering properties of the embankment materials for the Old West Polishing Pond and Old West Ash Pond is presented in **Table 1** above. The engineering properties are based on previous geotechnical explorations and laboratory testing.

The physical properties of Ash Pond No. 2 embankment construction materials are described in this paragraph. The original embankments are constructed of sand with varying amounts of coal pieces and gravel. The initial embankment raise is constructed of silty clay, clayey sand, sand, and gravel and the later embankment raise is constructed with layers of lean clay, silty clay, clayey silt, clayey, and gravel. An available summary of the engineering properties of the embankment materials for Ash Pond No. 2 is presented in **Table 3** below. The engineering properties are based on previous geotechnical explorations and laboratory testing.

Alluvial

Foundation

Material	Unit Weight (pcf)	:f) Effective (drained) Shear Strength Parameters		Total (undrained) Shear Strength Parameters	
		c' (psf)	Φ' (°)	c (psf)	Φ (°)
Fill: GP-GM (medium dense)	125	0	32	0	32
Fill: CL (hard)	120	0	32	4000	0
Fill: ML (hard)	120	0	32	4500	0
Fill: SC (medium dense)	120	0	28	0	28

Table 3. Summary of Construction Material Engineering Properties for Ash Pond No. 2

Physical properties of the embankment materials for the East Ash Pond are described as clayey silt and clay. The consistency of both the clayey silt and clay ranges from stiff to hard. The original pond surface is lined with a 4-foot thick compacted clay layer of 1.0 x 10⁻⁷ cm/s underlain by a 1-foot thick sand layer. The liner system of the embankment raise consists of a (from top to bottom) 45 mil reinforced polyethylene geomembrane, a 1-foot thick clay layer, and an 8 oz/sy polypropylene geotextile. A typical cross section profile of the liner system is shown on drawing C-56 presented in **Appendix B**. An available summary of the construction material engineering properties for the East Ash Pond is presented in **Table 4** below. The engineering properties are based on previous geotechnical explorations and laboratory testing.

Table 4.	Summary of Construction Material Engineering Properties for the East Ash
	Pond

Material	Unit Weight (pcf)	Effective (drained) Shear Strength Parameters		Total r (undrained) Shear Strength Parameters	
		c' (psf)	Φ' (°)	c (psf)	Φ (°)
Embankment Fill	105	30	32	2500	0
Liner System	120	60	30	2500	0

The method of site preparation and construction of the Old West Polishing Pond, Old West Ash Pond, Ash Pond No. 2, and the original East Ash Pond are not reasonably and readily available. Site preparation and construction of the 2003 East Ash Pond liner raise were completed in accordance with the applicable construction specification (see § 257.73(c)(1)(xi) below).

Reasonably and readily available approximate dates of construction of each successive stage of construction of the Old West Polishing Pond, Old West Ash Pond, Ash Pond No. 2, and East Ash Pond are provided in **Table 5** below.

Table 5. Approximate dates of construction of each successive stage of construction.

Date	Event	
1951 to 1952	Construction of historical Ash Pond No. 1	
1958	Construction of Ash Pond No. 2	
Late 1960's	Construction of historical Ash Pond No. 3	
1978	Embankment raise of Ash Pond No. 2	
1985	Embankment raise of Ash Pond No. 2 to elevation 484 feet and Ash Pond No. 3 (Old West Ash Pond) to elevation 460 feet	
1988 to 1989	Embankment raise of Old West Ash Pond to elevation 465 feet that merged historical Ash Pond No. 1 and Ash Pond No. 3 into one single pond and created the Old West Polishing Pond	
1989	Embankment raise of Ash Pond No. 2 to elevation 494 feet	
1995 to 1996	Construction of East Ash Pond	
2003	Embankment liner raise of East Ash Pond	
2009 to 2010	Eastern portion of Ash Pond No. 2 was removed to facilitate construction of the Leachate Pond	
2011	Landfill Cell 1 was constructed over placed CCR in Ash Pond No. 2 adjacent to the Leachate Pond	
2014	North Embankment tree removal, grading, and vegetation re-establishment of Ash Pond No. 2	

§ 257.73(c)(1)(vii): At a scale that details engineering structures and appurtenances relevant to the design, construction, operation, and maintenance of the CCR unit, detailed dimensional drawings of the CCR unit, including a plan view and cross sections of the length and width of the CCR unit, showing all zones, foundation improvements, drainage provisions, spillways, diversion ditches, outlets, instrument locations, and slope protection, in addition to the normal operating pool surface elevation and the maximum pool surface elevation following peak discharge from the inflow design flood, the expected maximum depth of CCR within the CCR surface impoundment, and any identifiable natural or manmade features that could adversely affect operation of the CCR unit due to malfunction or mis-operation.

Drawings that contain items pertaining to the requested information for the Old West Polishing Pond, Old West Ash Pond, Ash Pond No. 2, and East Ash Pond are listed in **Table 6** below. Items marked as "Not Available" are items not found during a review of the reasonably and readily available record documentation.

_	Old West Polishing Pond	Old West Ash Pond	Ash Pond No. 2	East Ash Pond
Dimensional plan view (all zones)	HEN1-B460-2	HEN1-B460-1 to 2	HEN1-B461, HEN1-C117	HEN1-C55
Dimensional cross sections	HEN1-B452 to B457	HEN1-B452 to B457	HEN1-B458-1 to 7, Berm Modification Drawings 7 to 9	HEN1-C56 to C59
Foundation Improvements	Not Applicable	Not Applicable	Not Applicable	Not Applicable
Drainage Provisions	Not Applicable	Not Applicable	Not Applicable	Not Applicable
Spillways and Outlets	Not Available	Not Available	Not Applicable	HEN1-C8 to C9, HEN1-C109, HEN1-C113
Diversion Ditches	Not Applicable	Not Applicable	Not Applicable	Not Applicable
Instrument Locations	Figure 2D	Figure 2C	Figure 2A	Figure 2B
Slope Protection	Not Available	Not Available	Berm Modification Drawings 3 to 9	HEN1-C56 to C59
Normal Operating Pool Elevation	Not Available	Not Available	Not Available	Not Available
Maximum Pool Elevation	Not Available	Not Available	Not Available	Not Available
Approximate Maximum Depth of CCR in 2016	11 feet	15 feet	46 feet	35 feet

Table 6. List of drawings containing items pertaining to the information requested in § 257.73(c)(1)(vii).

All drawings referenced in Table 6 above can be found in Appendix B and Appendix C.

Based on the review of the drawings listed above, no natural or manmade features that could adversely affect operation of these CCR units due to malfunction or mis-operation were identified.

§ 257.73(c)(1)(viii): A description of the type, purpose, and location of existing instrumentation.

Existing instrumentation consists of open-standpipe piezometers installed in 2015. The purpose of the piezometers is to measure the pore water pressures within the embankments of the Old West Polishing Pond, Old West Ash Pond, Ash Pond No. 2, and East Ash Pond. There are seven (7) existing piezometers within the Old West Polishing Pond, Old West Ash Pond, Ash Pond No. 2, and East Ash Pond. A location map of the existing instrumentation is presented in **Appendix C**.

§ 257.73(c)(1)(ix): Area-capacity curves for the CCR unit.

Area-capacity curves for the Old West Polishing Pond, Old West Ash Pond, Ash Pond No. 2, and East Ash Pond are not reasonably and readily available.

257.73(c)(1)(x): A description of each spillway and diversion design features and capacities and calculations used in their determination.

The Old West Polishing Pond contains a 24-inch diameter corrugated metal pipe (CMP) outlet that discharges stormwater to the Illinois River in accordance with the station's NPDES permit. Current capacity and calculation information for the Old West Polishing Pond's discharge capability is not reasonably and readily available.

The Old West Ash Pond contains a 24-inch dia. pipe culvert. Stormwater collected within the CCR unit drains via surface flow and through the pipe culvert into the Old West Polishing Pond. Current capacity and calculation information for the Old West Ash Pond's discharge capability is not reasonably and readily available.

The Ash Pond No. 2 does not contain a spillway or diversion feature. Stormwater collected within the CCR unit drains via surface flow into the East Ash Pond. Current capacity and calculation information for the Ash Pond No. 2's discharge capability is not reasonably and readily available.

The East Ash Pond contains two outlet structures. The southeast outlet is a 5-foot wide stoplog structure that is connected to a 36-inch diameter reinforced concrete pipe (RCP). The 36inch diameter RCP discharges into the East Polishing Pond. The northeast outlet, located on the northeast corner of the East Ash Pond, is a headwall structure connected to an 18inch diameter RCP. The 18-inch diameter RCP discharges into the East Leachate Pond. In 2016, the discharge capacity of the East Ash Pond was evaluated using HydroCAD 10 software modeling a 1,000-year, 24-hour rainfall event. The model results indicate that the East Ash Pond has enough storage capacity and will not overtop the embankment during the 1,000-year, 24-hour storm event. The results of the HydroCAD 10 analysis are presented below in **Table 7**.

	East Ash Pond
Approximate Minimum Berm Elevation ¹ (ft)	493.0
Approximate Emergency Spillway Elevation ¹ (ft)	Not Applicable
Starting Pool Elevation ¹ (ft)	490.4
Peak Elevation ¹ (ft)	4922
Time to Peak (hr)	12.5
Surface Area (ac)	6.5
Storage ² (ac-ft)	8.4

Table 7. Res	ults of Hydro	CAD 10 analysis
--------------	---------------	-----------------

Note: 1. Elevations are based on NAVD88 datum

2. Storage given is from Starting Pool Elevation to Peak Elevation.

§ 257.73(c)(1)(xi): The construction specifications and provisions for surveillance, maintenance, and repair of the CCR unit.

The construction specifications for Old West Polishing Pond, Old West Ash Pond, Ash Pond No. 2, and the original East Ash Pond are not reasonably and readily available. The construction specification for the 2003 East Ash Pond liner raise is located in *Specification J-2616, Rev. A* (presented in **Appendix D**).

The provisions for surveillance, maintenance, and repair of the Old West Polishing Pond and Old West Ash Pond are located in *Hennepin Power Station; West Ash Disposal Pond Maintenance Plan* (2013) (presented in **Appendix E**). The provisions for surveillance, maintenance, and repair of Ash Pond No. 2 are located in *Hennepin Power Station; Old East Ash Disposal Pond Maintenance Plan* (2013) (presented in **Appendix F**). The provisions for surveillance, maintenance, and repair of the East Ash Pond are located in *Hennepin Power Station; East Ash Disposal Pond Maintenance Plan* (2013) (presented in **Appendix F**). The provisions for surveillance, maintenance, and repair of the East Ash Pond are located in *Hennepin Power Station; East Ash Disposal Pond Maintenance Plan* (2014) (presented in **Appendix G**).

The operations and maintenance plans for the Old West Polishing Pond, Old West Ash Pond, Ash Pond No. 2, and East Ash Pond are currently being revised by Dynegy Midwest Generation, LLC.

§ 257.73(c)(1)(xii): Any record or knowledge of structural instability of the CCR unit.

There is no record or knowledge of structural instability of the Old West Polishing Pond, Old West Ash Pond, Ash Pond No. 2, and East Ash Pond at the Hennepin Power Station.

LIMITATIONS

The signature of AECOM's authorized representative on this document represents that to the best of AECOM's knowledge, information and belief in the exercise of its professional judgment, it is AECOM's professional opinion that the aforementioned information is accurate as of the date of such signature. Any recommendation, opinion or decisions by AECOM are made on the basis of AECOM's experience, qualifications and professional judgment and are not to be construed as warranties or guaranties. In addition, opinions relating to environmental, geologic, and geotechnical conditions or other estimates are based on available data and that actual conditions may vary from those encountered at the times and locations where data are obtained, despite the use of due care.

Sincerely,

Chudia Y

Claudia Prado Project Manager

Victor Modeer, P.E., D.GE Senior Project Manager

REFERENCES

United States Environmental Protection Agency (USEPA). (2015). *Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals From Electric Utilities; Final Rule.* 40 CFR Parts 257 and 261, 80 Fed. Reg. 21302, 21380 April 17, 2015.

United States Geological Survey (USGS). (2016). The National Map Viewer. http://viewer.nationalmap.gov/viewer/. USGS data first accessed in March of 2016.

APPENDICES

Appendix A: History of Construction Vicinity Map

Appendix B: Hennepin Power Station Drawings

Appendix C: Hennepin Power Station Piezometer Locations

Appendix D: Specification J-2616, Rev. A, Primary Ash Pond Modifications

- Appendix E: Hennepin Power Station; West Ash Disposal Pond Maintenance Plan (2013)
- Appendix F: Hennepin Power Station; Old East Ash Disposal Pond Maintenance Plan (2013)
- Appendix G: Hennepin Power Station; East Ash Disposal Pond Maintenance Plan (2014)

Appendix A: History of Construction Vicinity Map

Appendix B: Hennepin Power Station Drawings

- 1. "Plan of Primary Ash Pond, Modification to Primary Ash Pond", Drawing No. C-55, Revision 0.1, 14 February, 2003, Sargent & Lundy, LLC.
- 2. "Sections and Details Sheet 1, Modification to Primary Ash Pond", Drawing No. C-56, Revision 0.1, 14 February, 2003, Sargent & Lundy, LLC.
- 3. "Sections and Details Sheet 2, Modification to Primary Ash Pond", Drawing No. C-57, Revision 0.1, 14 February, 2003, Sargent & Lundy, LLC.
- 4. "Sections and Details Sheet 3, Modification to Primary Ash Pond", Drawing No. C-58, Revision 0.1, 14 February, 2003, Sargent & Lundy, LLC.
- 5. "Sections and Details Sheet 4, Modification to Primary Ash Pond", Drawing No. C-59, Revision 0.1, 14 February, 2003, Sargent & Lundy, LLC.
- 6. "Cross Sections of Ash Pond Berm Extension, Sta 1+00, 5+00 & 9+50", Drawing No. E-HEN1-B452, Revision 0, 4 November, 1997, Illinois Power Company.
- 7. "Cross Sections of Ash Pond Berm Extension, Sta 14+25, 20+80 & 26+00", Drawing No. E-HEN1-B453, Revision 0, 4 November, 1997, Illinois Power Company.
- 8. "Cross Sections of Ash Pond Berm Extension, Sta 30+00, 35+00 & 39+00", Drawing No. E-HEN1-B454, Revision 0, 4 November, 1997, Illinois Power Company.
- 9. "Cross Sections of Ash Pond Berm Extension, Sta 40+00, 42+00, 44+90", Drawing No. E-HEN1-B455, Revision 0, 4 November, 1997, Illinois Power Company.
- 10. "Cross Sections of Ash Pond Berm Extension, Sta 47+00, 51+00 & 56+00", Drawing No. E-HEN1-B456, Revision 0, 4 November, 1997, Illinois Power Company.
- 11. "Cross Sections of Ash Pond Berm Extension, Sta 61+50", Drawing No. E-HEN1-B457, Revision 0, 4 November, 1997, Illinois Power Company.
- "Cross Sections, East Ash Pond Extension", Drawing No. E-HEN1-B458-1, Revision 0, 8 March, 1990, Illinois Power Company.
- 13. "Cross Sections, East Ash Pond Extension", Drawing No. E-HEN1-B458-2, Revision 0, 8 March, 1990, Illinois Power Company.
- 14. "Cross Sections, East Ash Pond Extension", Drawing No. E-HEN1-B458-3, Revision 0, 8 March, 1990, Illinois Power Company.
- 15. "Cross Sections, East Ash Pond Extension", Drawing No. E-HEN1-B458-4, Revision 0, 8 March, 1990, Illinois Power Company.
- 16. "Cross Sections, East Ash Pond Extension", Drawing No. E-HEN1-B458-5, Revision 0, 8 March, 1990, Illinois Power Company.
- 17. "Cross Sections, East Ash Pond Extension", Drawing No. E-HEN1-B458-6, Revision 0, 8 March, 1990, Illinois Power Company.
- "Cross Sections, East Ash Pond Extension", Drawing No. E-HEN1-B458-7, Revision 0, 8 March, 1990, Illinois Power Company.
- 19. "Plan-Unit #1 Ash Pond Extension, Sheet #1", Drawing No. E-HEN1-B460-1, 2 February, 1988, Illinois Power Company.
- 20. "Plan-Unit #1 Ash Pond Extension, Sheet #2", Drawing No. E-HEN1-B460-2, 2 February, 1988, Illinois Power Company.

Appendix B: Hennepin Power Station Drawings (continued)

- 21. "Contour and Grading Plan, Unit #2 Ash Pond Extension", Drawing No. CE-HEN1-B461, Revision 0, 8 March, 1990, Illinois Power Company.
- 22. "Pond 2 East, Flexible Membrane Liner and Structures", Drawing No. HEN1-C109, Revision 0, 28 July, 2010, Civil & Environmental Consultants, Inc.
- 23. "Pond 2 East, Details", Drawing No. HEN1-C113, Revision 0, 28 July, 2010, Civil & Environmental Consultants, Inc.
- 24. "Landfill Phase 1 Construction, Existing Conditions", Drawing No. HEN1-C117, Revision 0, 28 November, 2010, Civil & Environmental Consultants, Inc.
- 25. "Layout-Pond Discharge Structures, 1995 Ash Facility", Drawing No. CE-HEN1-C8, Revision 0, 17 September, 1996, Illinois Power Company.
- 26. "Details: Pond Discharge Structure, 1995 Ash Facility", Drawing No. CE-HEN1-C9, Revision 0, 17 September, 1996, Illinois Power Company.
- 27. "East Berm Modification, Existing Site Conditions", Drawing No. 3, Revision 3, 4 February, 2015, Civil & Environmental Consultants, Inc.
- 28. "East Berm Modification, Proposed Site Plan", Drawing No. 4, Revision 3, 4 February, 2015, Civil & Environmental Consultants, Inc.
- 29. "East Berm Modification, Proposed Grading Plan 1 of 2", Drawing No. 5, Revision 3, 4 February, 2015, Civil & Environmental Consultants, Inc.
- 30. "East Berm Modification, Proposed Grading Plan 2 of 2", Drawing No. 6, Revision 3, 4 February, 2015, Civil & Environmental Consultants, Inc.
- 31. "East Berm Modification, Proposed Sections Sta 1+00 to 15+00", Drawing No. 7, Revision 3, 4 February, 2015, Civil & Environmental Consultants, Inc.
- 32. "East Berm Modification, Proposed Sections Sta 16+00 to 23+50", Drawing No. 8, Revision 3, 4 February, 2015, Civil & Environmental Consultants, Inc.
- 33. "East Berm Modification, Berm and Erosion Control Details", Drawing No. 9, Revision 3, 4 February, 2015, Civil & Environmental Consultants, Inc.

and the second

the second se

500			۰				<u></u>	٦	
				Electro	nic Filing: Received		₩U8/21/2U2U		
[495 			, , ,						
L - 490	2.5	2.5	l 					†/ /	
		AREA= 1.75355			AREA = 44.9687		2.5	2.5	
		- <u>+</u> <u>/</u>	1 1 1				·	AREA= 5.15501	
480			 	 					
			 					\ -	- \
470			, , , ,,					, , , ,	<u> </u>
. L L									
<u>⊢ 465</u>			 	 	 	 		 	
_ - 460			, , , , ,						\
- 455 			, , , ,						
 	 		, , , , ,	, , , , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				i ! ! 	
└── 445 └────									
 440 			, , , ,	_ L_L	, , , , , ,		, , , , , , , , , , , , , , , , , , ,	, , , , , , , , , , , , , , , , , , , ,	LI.
8+00	7+00 6	5+00 5+	+00 4	+00	3+00 2	+00 1	+00 0+ BASE LINE	+00 1 [.] E N. 11,000	+00
500			·	-,	SECTION	E. 52.750			
			, , , ,						
L - 490	<u> </u>	_l 1 1 	J I I I	. <u></u>	L	 1 1 	······································		
	AREA = 2.37088			AREA =	40.9291		AREA = 4.81817		
			י ז י				+		 !
480		/					<u> </u>	<u>}</u>	
470			 						
			J ! !		L		<u>+</u>		
460			, , , ,						
		- †	1 1 1			- 	· · · · · · · · · · · · · · · · · · ·		EC 1 LL
E 450			 			 			
⊢ └ └ 445			1 1 1						
			1 				+		$\left \right\rangle$
☐ 440 └_⊥_┘_┘_└_└_⊥. 8+00	; 	; 	; !	; _'L_I_J_JL_I +00		; 	; .4_JL_L_L_J_J_L_L_L_I +00 ^-	; 	; ` +00
0.00	····· 6					E 52.449	BASE LINE	E N. 11,000	
NO DATE DRF	DESCRIPTION E C	A NO DATE DRF	DESCRIPTION	E C A <u>NO</u>		L. JZ.448		REFERENCES	
				1.	UAIA CULLECTED FROM TOPO ON DWG. CE-HEN1-B- DATED NOV. 4, 1987, REV. O COORDINATES WERE SUPPLIED BY G. DECKARD FIEL TIEING J.L. FISHER'S PANELS.	450 LD INFORMATION			
					··				

			 	Electronic F	iling: Received	, Clerk's Office	08/27/2020		
L 495		2.5 1						2-5	
- - 490 	 	AREA = 1.27521		/				/	\
L 485					AREA = 38.3341			ARE	A = 5.28409
r ⊢ ∟									
- 480 		, , , , ,		, , ,					
L 475									
└─ 470 └─	 	' + 	' 	¦ 			 	. <u> </u> 	
_ 		; ; ;		i 				 	
- 460 		; +		i 					
⊢ └ 455 └	¦ 	' ' ' '							
[450 							 		
L - 445 				, , , ,					
L L L 440									
L_I_JL_L_I_J_J_L.)+00 9		±_Jl_L_L_I_Jl_L_L_ +00		-'L_L_I_J'L_L_I_J +00 5·	-'L_L_L_J_JL_L_L_J! +00 4+	00 3+	00 2·	⊥_J!L_⊥_J_J!L_⊥ +00	1+00
500					SECTION E	52,195			
 - -		T	 ! !	 				T	
└─ 495 └─		; +		; , , ,	 		·····	·	
L - 490	AREA = 1.37484	 	 	 					
- J/L 1				AREA = 29.0000		2.5 1	AREA = 6,80794		
L 485		 	 	1	 	/	·····	 	
- 480			4			/	·····		
	 	 + 	 	 	 		·····		
⊢ └─ 470 └─────	, , , , ,	; ; +	; 	; , ,	; 		\ \	+	
									\backslash
- 405 	- <mark> </mark>	+ 	4 1 1	/ ! !	·		 	 	-\
L 460									
L L 455									
F	- 	† ! !			-;; 			† 	
- 450 				 			 		
└ └ └ 445								1 1 1 1	
L L L L 440		+		 					
└_⊥_┘_┘_└_└_┘_┘_┘_└.)+00 9	_i_L_I_J_I_L_L_I_J_J_L_ +00 8-	⊥L_L_L_JL_L_L_ +00 7-			-iL_L_1_J_J_L_L_1_Ji +00 4+	00 3+	00 2·		1+00
DATE DRF DE	SCRIPTION E C	A NO DATE DRF	DESCRIPTION	E C A NOTES	SECTION E	51,920		REFERENCES	
				1. DATA COLLEC DATED NOV.	CTED FROM TOPO ON DWG. CE-HEN1-B-45 4. 1987. REV. O	50			
				2. COURDINATES	WERE SUPPLIED BY G. DECKARD FIELD	INFURMATION			

______ //

E	NO D	ATE	DRF	DESCRIPTION	E	0	:	A	NO	DATE	DRF	DESCRIPTION	E	С	A		NOTES	REFERENCES
Г	0																	
																1	DATA COLLECTED FROM TOPO ON DWG. CE-HEN1-B-450	
																	DATED NOT. 41 13010 REV. O	
F																- 2	2. COORDINATES WERE SUPPLIED BY G. DECKARD FIELD INFORMATION	
Г																	TEINO TO J.L. FISHER S FAMELS.	
Г																		
F	- 1				1	1								1				
F	- 1				1								1	1	1			
F																		

ILLINOIS POWER COMPANY PLAN-UNITH ASH POND EXTENSION HENNEPIN POWER STATION SHEET #2 E-HEN1-B460-2

D

[NO	DATE	DRF	DESCRIPTION	E	C	A	NO	DATE	DRF	DESCRIPTION
- [0										
[
[
[
[
[
[
[
1											

E	C	A	REVISI	ON STAT	US		ILLINOIS POWER COMPANY									
				TRUCTIO	N											
			U -RECL				becarbit									
						L 1		DOM				стиргс				
			U			LATUUT-PUND DISCHARGE STRUCTURES										
						1	1995 ASH FACILITY									
						1										
						HENNEPIN PUWER STATIUN										
						DR	G.R.H.	CAD	G.R.H.	DATE	1/5/94	1				
						OK		CKD		SCALE	NO SCALE					
						APP										
			p0019275.dgn			APP		9/17/96		LE-HENI-CO		1-68				

TOP OF GRATING = TOP OF CONCRETE
ELEV.494.0
FODTING REINFORCEMENT
SEE DETAIL 4
DN "D"-"D" NOTE: WRAP BOTTOM 2'-O" OF FOOTING IN BENTOMAT.
